-
1
-
-
84861809091
-
Systems biology of virus-host signaling network interactions
-
Xue Q., Miller-Jensen K. Systems biology of virus-host signaling network interactions. BMB Rep. 2012, 45:213-220.
-
(2012)
BMB Rep.
, vol.45
, pp. 213-220
-
-
Xue, Q.1
Miller-Jensen, K.2
-
2
-
-
33745740337
-
Systems biology of virus entry in mammalian cells
-
Damm E.M., Pelkmans L. Systems biology of virus entry in mammalian cells. Cell. Microbiol. 2006, 8:1219-1227.
-
(2006)
Cell. Microbiol.
, vol.8
, pp. 1219-1227
-
-
Damm, E.M.1
Pelkmans, L.2
-
3
-
-
80053241157
-
Virus-host interactomes and global models of virus-infected cells
-
Friedel C.C., Haas J. Virus-host interactomes and global models of virus-infected cells. Trends Microbiol. 2011, 19:501-508.
-
(2011)
Trends Microbiol.
, vol.19
, pp. 501-508
-
-
Friedel, C.C.1
Haas, J.2
-
4
-
-
48749104048
-
Innate immune modulation by RNA viruses: emerging insights from functional genomics
-
Katze M.G., et al. Innate immune modulation by RNA viruses: emerging insights from functional genomics. Nat. Rev. Immunol. 2008, 8:644-654.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 644-654
-
-
Katze, M.G.1
-
5
-
-
79960316181
-
Chemotactic anti-viral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells
-
Lutschg V., et al. Chemotactic anti-viral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells. Nat. Commun. 2011, 2:391.
-
(2011)
Nat. Commun.
, vol.2
, pp. 391
-
-
Lutschg, V.1
-
6
-
-
84965192813
-
Lecture on phagocytosis and immunity
-
Metschnikoff E. Lecture on phagocytosis and immunity. Br. Med. J. 1891, 1:213-217.
-
(1891)
Br. Med. J.
, vol.1
, pp. 213-217
-
-
Metschnikoff, E.1
-
7
-
-
33645020439
-
Drinking a lot is good for dendritic cells
-
Norbury C.C. Drinking a lot is good for dendritic cells. Immunology 2006, 117:443-451.
-
(2006)
Immunology
, vol.117
, pp. 443-451
-
-
Norbury, C.C.1
-
8
-
-
80355131976
-
Protective and pathogenic functions of macrophage subsets
-
Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11:723-737.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 723-737
-
-
Murray, P.J.1
Wynn, T.A.2
-
9
-
-
76249095169
-
Development of monocytes, macrophages, and dendritic cells
-
Geissmann F., et al. Development of monocytes, macrophages, and dendritic cells. Science 2010, 327:656-661.
-
(2010)
Science
, vol.327
, pp. 656-661
-
-
Geissmann, F.1
-
10
-
-
51649127081
-
The phagocytes: neutrophils and monocytes
-
Dale D.C., et al. The phagocytes: neutrophils and monocytes. Blood 2008, 112:935-945.
-
(2008)
Blood
, vol.112
, pp. 935-945
-
-
Dale, D.C.1
-
12
-
-
0035838984
-
Dendritic cells: specialized and regulated antigen processing machines
-
Mellman I., Steinman R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001, 106:255-258.
-
(2001)
Cell
, vol.106
, pp. 255-258
-
-
Mellman, I.1
Steinman, R.M.2
-
13
-
-
3042719094
-
Cross-presentation: dendritic cells and macrophages bite off more than they can chew!
-
Brode S., Macary P.A. Cross-presentation: dendritic cells and macrophages bite off more than they can chew!. Immunology 2004, 112:345-351.
-
(2004)
Immunology
, vol.112
, pp. 345-351
-
-
Brode, S.1
Macary, P.A.2
-
14
-
-
0020502358
-
Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity
-
Nathan C.F., et al. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 1983, 158:670-689.
-
(1983)
J. Exp. Med.
, vol.158
, pp. 670-689
-
-
Nathan, C.F.1
-
15
-
-
0030937832
-
Nitric oxide and macrophage function
-
MacMicking J., et al. Nitric oxide and macrophage function. Annu. Rev. Immunol. 1997, 15:323-350.
-
(1997)
Annu. Rev. Immunol.
, vol.15
, pp. 323-350
-
-
MacMicking, J.1
-
16
-
-
84872474723
-
Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells
-
Kotsias F., et al. Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid. Redox Signal. 2013, 18:714-729.
-
(2013)
Antioxid. Redox Signal.
, vol.18
, pp. 714-729
-
-
Kotsias, F.1
-
17
-
-
84862280795
-
Plasmacytoid dendritic cells are productively infected and activated through TLR-7 early after arenavirus infection
-
Macal M., et al. Plasmacytoid dendritic cells are productively infected and activated through TLR-7 early after arenavirus infection. Cell Host Microbe 2012, 11:617-630.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 617-630
-
-
Macal, M.1
-
18
-
-
63049113263
-
Defining macropinocytosis
-
Kerr M.C., Teasdale R.D. Defining macropinocytosis. Traffic 2009, 10:364-371.
-
(2009)
Traffic
, vol.10
, pp. 364-371
-
-
Kerr, M.C.1
Teasdale, R.D.2
-
19
-
-
34547114456
-
Pathways of clathrin-independent endocytosis
-
Mayor S., Pagano R.E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 2007, 8:603-612.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 603-612
-
-
Mayor, S.1
Pagano, R.E.2
-
20
-
-
79960720320
-
Molecular mechanism and physiological functions of clathrin-mediated endocytosis
-
McMahon H.T., Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2011, 12:517-533.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 517-533
-
-
McMahon, H.T.1
Boucrot, E.2
-
22
-
-
84856698420
-
Endocytosis and signaling: cell logistics shape the eukaryotic cell plan
-
Sigismund S., et al. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol. Rev. 2012, 92:273-366.
-
(2012)
Physiol. Rev.
, vol.92
, pp. 273-366
-
-
Sigismund, S.1
-
23
-
-
80052248915
-
Dynamin: functional design of a membrane fission catalyst
-
Schmid S.L., Frolov V.A. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 2011, 27:79-105.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 79-105
-
-
Schmid, S.L.1
Frolov, V.A.2
-
25
-
-
56949091061
-
Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling
-
Donaldson J.G., et al. Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell. Signal. 2009, 21:1-6.
-
(2009)
Cell. Signal.
, vol.21
, pp. 1-6
-
-
Donaldson, J.G.1
-
26
-
-
79960379735
-
Clathrin-independent endocytosis: mechanisms and function
-
Sandvig K., et al. Clathrin-independent endocytosis: mechanisms and function. Curr. Opin. Cell Biol. 2011, 23:413-420.
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, pp. 413-420
-
-
Sandvig, K.1
-
27
-
-
77953576191
-
Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair
-
Tam C., et al. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J. Cell Biol. 2010, 189:1027-1038.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 1027-1038
-
-
Tam, C.1
-
28
-
-
65449120034
-
Virus entry by macropinocytosis
-
Mercer J., Helenius A. Virus entry by macropinocytosis. Nat. Cell Biol. 2009, 11:510-520.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 510-520
-
-
Mercer, J.1
Helenius, A.2
-
29
-
-
0034604337
-
Developmental control of endocytosis in dendritic cells by Cdc42
-
Garrett W.S., et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 2000, 102:325-334.
-
(2000)
Cell
, vol.102
, pp. 325-334
-
-
Garrett, W.S.1
-
30
-
-
84878738224
-
Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes
-
Bohdanowicz M., et al. Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Mol. Biol. Cell 2013, 24:1700-1712.
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 1700-1712
-
-
Bohdanowicz, M.1
-
31
-
-
77149129342
-
Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling
-
Koivusalo M., et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 2010, 188:547-563.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 547-563
-
-
Koivusalo, M.1
-
32
-
-
47749107873
-
Shaping cups into phagosomes and macropinosomes
-
Swanson J.A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 2008, 9:639-649.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 639-649
-
-
Swanson, J.A.1
-
33
-
-
84872352440
-
Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis
-
Bohdanowicz M., Grinstein S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol. Rev. 2013, 93:69-106.
-
(2013)
Physiol. Rev.
, vol.93
, pp. 69-106
-
-
Bohdanowicz, M.1
Grinstein, S.2
-
34
-
-
33947194392
-
The phagosome: compartment with a license to kill
-
Haas A. The phagosome: compartment with a license to kill. Traffic 2007, 8:311-330.
-
(2007)
Traffic
, vol.8
, pp. 311-330
-
-
Haas, A.1
-
35
-
-
84856935673
-
The cell biology of phagocytosis
-
Flannagan R.S., et al. The cell biology of phagocytosis. Annu. Rev. Pathol. 2011, 7:61-98.
-
(2011)
Annu. Rev. Pathol.
, vol.7
, pp. 61-98
-
-
Flannagan, R.S.1
-
36
-
-
33749033380
-
A novel role for phagocytosis-like uptake in herpes simplex virus entry
-
Clement C., et al. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J. Cell Biol. 2006, 174:1009-1021.
-
(2006)
J. Cell Biol.
, vol.174
, pp. 1009-1021
-
-
Clement, C.1
-
37
-
-
46449108849
-
Ameobal pathogen mimivirus infects macrophages through phagocytosis
-
Ghigo E., et al. Ameobal pathogen mimivirus infects macrophages through phagocytosis. PLoS Pathog. 2008, 4:e1000087.
-
(2008)
PLoS Pathog.
, vol.4
-
-
Ghigo, E.1
-
38
-
-
13444310867
-
Early steps of clathrin-mediated endocytosis involved in phagosomal escape of Fcgamma receptor-targeted adenovirus
-
Meier O., et al. Early steps of clathrin-mediated endocytosis involved in phagosomal escape of Fcgamma receptor-targeted adenovirus. J. Virol. 2005, 79:2604-2613.
-
(2005)
J. Virol.
, vol.79
, pp. 2604-2613
-
-
Meier, O.1
-
39
-
-
84865296065
-
Gulping rather than sipping: macropinocytosis as a way of virus entry
-
Mercer J., Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr. Opin. Microbiol. 2012, 15:490-499.
-
(2012)
Curr. Opin. Microbiol.
, vol.15
, pp. 490-499
-
-
Mercer, J.1
Helenius, A.2
-
40
-
-
84864134613
-
How nascent phagosomes mature to become phagolysosomes
-
Fairn G.D., Grinstein S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 2012, 33:397-405.
-
(2012)
Trends Immunol.
, vol.33
, pp. 397-405
-
-
Fairn, G.D.1
Grinstein, S.2
-
41
-
-
32944473016
-
Virus entry: open sesame
-
Marsh M., Helenius A. Virus entry: open sesame. Cell 2006, 124:729-740.
-
(2006)
Cell
, vol.124
, pp. 729-740
-
-
Marsh, M.1
Helenius, A.2
-
42
-
-
73549093632
-
Virus movements on the plasma membrane support infection and transmission between cells
-
Burckhardt C.J., Greber U.F. Virus movements on the plasma membrane support infection and transmission between cells. PLoS Pathog. 2009, 5:e1000621.
-
(2009)
PLoS Pathog.
, vol.5
-
-
Burckhardt, C.J.1
Greber, U.F.2
-
44
-
-
77949266054
-
Viruses are essential agents within the roots and stem of the tree of life
-
Villarreal L.P., Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 2010, 262:698-710.
-
(2010)
J. Theor. Biol.
, vol.262
, pp. 698-710
-
-
Villarreal, L.P.1
Witzany, G.2
-
45
-
-
1642485249
-
The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic
-
Ferlazzo G., et al. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 2004, 172:1455-1462.
-
(2004)
J. Immunol.
, vol.172
, pp. 1455-1462
-
-
Ferlazzo, G.1
-
46
-
-
83655162842
-
The cell biology of receptor-mediated virus entry
-
Grove J., Marsh M. The cell biology of receptor-mediated virus entry. J. Cell Biol. 2011, 195:1071-1082.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 1071-1082
-
-
Grove, J.1
Marsh, M.2
-
48
-
-
77950343791
-
Pattern recognition receptors and inflammation
-
Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140:805-820.
-
(2010)
Cell
, vol.140
, pp. 805-820
-
-
Takeuchi, O.1
Akira, S.2
-
49
-
-
77949940198
-
Intracellular toll-like receptors
-
Blasius A.L., Beutler B. Intracellular toll-like receptors. Immunity 2010, 32:305-315.
-
(2010)
Immunity
, vol.32
, pp. 305-315
-
-
Blasius, A.L.1
Beutler, B.2
-
50
-
-
31344461659
-
Innate immune recognition of viral infection
-
Kawai T., Akira S. Innate immune recognition of viral infection. Nat. Immunol. 2006, 7:131-137.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 131-137
-
-
Kawai, T.1
Akira, S.2
-
51
-
-
59849118148
-
Interferons: signaling, antiviral and viral evasion
-
Bonjardim C.A., et al. Interferons: signaling, antiviral and viral evasion. Immunol. Lett. 2009, 122:1-11.
-
(2009)
Immunol. Lett.
, vol.122
, pp. 1-11
-
-
Bonjardim, C.A.1
-
52
-
-
67650102353
-
Scavenger receptors: role in innate immunity and microbial pathogenesis
-
Areschoug T., Gordon S. Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell. Microbiol. 2009, 11:1160-1169.
-
(2009)
Cell. Microbiol.
, vol.11
, pp. 1160-1169
-
-
Areschoug, T.1
Gordon, S.2
-
53
-
-
2542474306
-
Self- and nonself-recognition by C-type lectins on dendritic cells
-
Geijtenbeek T.B., et al. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 2004, 22:33-54.
-
(2004)
Annu. Rev. Immunol.
, vol.22
, pp. 33-54
-
-
Geijtenbeek, T.B.1
-
54
-
-
53249132649
-
Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses
-
van Vliet S.J., et al. Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses. Immunol. Cell Biol. 2008, 86:580-587.
-
(2008)
Immunol. Cell Biol.
, vol.86
, pp. 580-587
-
-
van Vliet, S.J.1
-
55
-
-
77954534278
-
C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity
-
Svajger U., et al. C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell. Signal. 2010, 22:1397-1405.
-
(2010)
Cell. Signal.
, vol.22
, pp. 1397-1405
-
-
Svajger, U.1
-
56
-
-
79960546342
-
DC-SIGN as a receptor for phleboviruses
-
Lozach P.Y., et al. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 2011, 10:75-88.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 75-88
-
-
Lozach, P.Y.1
-
58
-
-
80052233389
-
Endosome maturation
-
Huotari J., Helenius A. Endosome maturation. EMBO J. 2011, 30:3481-3500.
-
(2011)
EMBO J.
, vol.30
, pp. 3481-3500
-
-
Huotari, J.1
Helenius, A.2
-
59
-
-
78651415502
-
Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH
-
Scott C.C., Gruenberg J. Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. Bioessays 2011, 33:103-110.
-
(2011)
Bioessays
, vol.33
, pp. 103-110
-
-
Scott, C.C.1
Gruenberg, J.2
-
60
-
-
79952621850
-
Lysosomal localization and mechanism of membrane penetration influence nonenveloped virus activation of the NLRP3 inflammasome
-
Barlan A.U., et al. Lysosomal localization and mechanism of membrane penetration influence nonenveloped virus activation of the NLRP3 inflammasome. Virology 2011, 412:306-314.
-
(2011)
Virology
, vol.412
, pp. 306-314
-
-
Barlan, A.U.1
-
61
-
-
65249139458
-
HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes
-
Miyauchi K., et al. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 2009, 137:433-444.
-
(2009)
Cell
, vol.137
, pp. 433-444
-
-
Miyauchi, K.1
-
62
-
-
84859527579
-
Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner
-
Haspot F., et al. Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PLoS ONE 2012, 7:e34795.
-
(2012)
PLoS ONE
, vol.7
-
-
Haspot, F.1
-
63
-
-
84866893032
-
PDGF receptor-alpha does not promote HCMV entry into epithelial and endothelial cells but increased quantities stimulate entry by an abnormal pathway
-
Vanarsdall A.L., et al. PDGF receptor-alpha does not promote HCMV entry into epithelial and endothelial cells but increased quantities stimulate entry by an abnormal pathway. PLoS Pathog. 2012, 8:e1002905.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Vanarsdall, A.L.1
-
64
-
-
0037404499
-
Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells
-
Nicola A.V., et al. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J. Virol. 2003, 77:5324-5332.
-
(2003)
J. Virol.
, vol.77
, pp. 5324-5332
-
-
Nicola, A.V.1
-
65
-
-
84876871358
-
Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein
-
Krzyzaniak M.A., et al. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog. 2013, 9:e1003309.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Krzyzaniak, M.A.1
-
66
-
-
41949139871
-
Subversion of CtBP1 controlled macropinocytosis by human Adenovirus serotype 3
-
Amstutz B., et al. Subversion of CtBP1 controlled macropinocytosis by human Adenovirus serotype 3. EMBO J. 2008, 27:956-966.
-
(2008)
EMBO J.
, vol.27
, pp. 956-966
-
-
Amstutz, B.1
-
67
-
-
77951446656
-
Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35
-
Kalin S., et al. Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J. Virol. 2010, 84:5336-5350.
-
(2010)
J. Virol.
, vol.84
, pp. 5336-5350
-
-
Kalin, S.1
-
68
-
-
84857356725
-
Poxvirus host cell entry
-
Schmidt F.I., et al. Poxvirus host cell entry. Curr. Opin. Virol. 2012, 2:20-27.
-
(2012)
Curr. Opin. Virol.
, vol.2
, pp. 20-27
-
-
Schmidt, F.I.1
-
69
-
-
77954072416
-
A differential role for macropinocytosis in mediating entry of the two forms of vaccinia virus into dendritic cells
-
Sandgren K.J., et al. A differential role for macropinocytosis in mediating entry of the two forms of vaccinia virus into dendritic cells. PLoS Pathog. 2010, 6:e1000866.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Sandgren, K.J.1
-
70
-
-
0034662981
-
Macrophages present pinocytosed exogenous antigen via MHC class I whereas antigen ingested by receptor-mediated endocytosis is presented via MHC class II
-
Peppelenbosch M.P., et al. Macrophages present pinocytosed exogenous antigen via MHC class I whereas antigen ingested by receptor-mediated endocytosis is presented via MHC class II. J. Immunol. 2000, 165:1984-1991.
-
(2000)
J. Immunol.
, vol.165
, pp. 1984-1991
-
-
Peppelenbosch, M.P.1
-
71
-
-
0030937833
-
Capture and processing of exogenous antigens for presentation on MHC molecules
-
Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol. 1997, 15:821-850.
-
(1997)
Annu. Rev. Immunol.
, vol.15
, pp. 821-850
-
-
Watts, C.1
-
72
-
-
84872003613
-
Macropinocytosis-like HIV-1 internalization in macrophages is CCR5 dependent and leads to efficient but delayed degradation in endosomal compartments
-
Gobeil L.A., et al. Macropinocytosis-like HIV-1 internalization in macrophages is CCR5 dependent and leads to efficient but delayed degradation in endosomal compartments. J. Virol. 2013, 87:735-745.
-
(2013)
J. Virol.
, vol.87
, pp. 735-745
-
-
Gobeil, L.A.1
-
73
-
-
0034755158
-
Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis
-
Marechal V., et al. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J. Virol. 2001, 75:11166-11177.
-
(2001)
J. Virol.
, vol.75
, pp. 11166-11177
-
-
Marechal, V.1
-
74
-
-
79953273232
-
Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway
-
de Vries E., et al. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 2011, 7:e1001329.
-
(2011)
PLoS Pathog.
, vol.7
-
-
de Vries, E.1
-
75
-
-
78149355646
-
Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner
-
Nanbo A., et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 2010, 6:e1001121.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Nanbo, A.1
-
76
-
-
78149301316
-
Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes
-
Saeed M.F., et al. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 2010, 6:e1001110.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Saeed, M.F.1
-
77
-
-
78651237433
-
Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus
-
Valiya Veettil M., et al. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus. PLoS Pathog. 2010, 6:e1001238.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Valiya Veettil, M.1
-
78
-
-
78650045778
-
The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus
-
Hunt C.L., et al. The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus. J. Virol. 2011, 85:334-347.
-
(2011)
J. Virol.
, vol.85
, pp. 334-347
-
-
Hunt, C.L.1
-
79
-
-
78650267415
-
HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1
-
Carter G.C., et al. HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology 2011, 409:234-250.
-
(2011)
Virology
, vol.409
, pp. 234-250
-
-
Carter, G.C.1
-
80
-
-
84655161743
-
Macroautophagy during innate immune activation
-
Munz C. Macroautophagy during innate immune activation. Front. Microbiol. 2011, 2:72.
-
(2011)
Front. Microbiol.
, vol.2
, pp. 72
-
-
Munz, C.1
-
81
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N., et al. Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-1075.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
-
82
-
-
41949101594
-
Toll-like receptors control autophagy
-
Delgado M.A., et al. Toll-like receptors control autophagy. EMBO J. 2008, 27:1110-1121.
-
(2008)
EMBO J.
, vol.27
, pp. 1110-1121
-
-
Delgado, M.A.1
-
83
-
-
77953272740
-
Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses
-
Blanchet F.P., et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 2010, 32:654-669.
-
(2010)
Immunity
, vol.32
, pp. 654-669
-
-
Blanchet, F.P.1
-
84
-
-
84863714328
-
Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy
-
Campbell G.R., Spector S.A. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog. 2012, 8:e1002689.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Campbell, G.R.1
Spector, S.A.2
-
85
-
-
33947134377
-
Autophagy-dependent viral recognition by plasmacytoid dendritic cells
-
Lee H.K., et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007, 315:1398-1401.
-
(2007)
Science
, vol.315
, pp. 1398-1401
-
-
Lee, H.K.1
-
86
-
-
12844275079
-
Endogenous MHC class II processing of a viral nuclear antigen after autophagy
-
Paludan C., et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005, 307:593-596.
-
(2005)
Science
, vol.307
, pp. 593-596
-
-
Paludan, C.1
-
87
-
-
77952557130
-
Viral interactions with macroautophagy: a double-edged sword
-
Lin L.T., et al. Viral interactions with macroautophagy: a double-edged sword. Virology 2010, 402:1-10.
-
(2010)
Virology
, vol.402
, pp. 1-10
-
-
Lin, L.T.1
-
88
-
-
80755169686
-
The tug-of-war between dendritic cells and human chronic viruses
-
Rahman S., et al. The tug-of-war between dendritic cells and human chronic viruses. Int. Rev. Immunol. 2011, 30:341-365.
-
(2011)
Int. Rev. Immunol.
, vol.30
, pp. 341-365
-
-
Rahman, S.1
-
89
-
-
0347122085
-
Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation
-
Bosio C.M., et al. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J. Infect. Dis. 2003, 188:1630-1638.
-
(2003)
J. Infect. Dis.
, vol.188
, pp. 1630-1638
-
-
Bosio, C.M.1
-
90
-
-
33750815125
-
HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells
-
Harman A.N., et al. HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J. Immunol. 2006, 177:7103-7113.
-
(2006)
J. Immunol.
, vol.177
, pp. 7103-7113
-
-
Harman, A.N.1
-
91
-
-
0038025223
-
Recruitment of HIV and its receptors to dendritic cell-T cell junctions
-
McDonald D., et al. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 2003, 300:1295-1297.
-
(2003)
Science
, vol.300
, pp. 1295-1297
-
-
McDonald, D.1
-
92
-
-
0034598905
-
DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells
-
Geijtenbeek T.B., et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000, 100:587-597.
-
(2000)
Cell
, vol.100
, pp. 587-597
-
-
Geijtenbeek, T.B.1
-
93
-
-
0242492512
-
Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway
-
Gummuluru S., et al. Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J. Virol. 2003, 77:12865-12874.
-
(2003)
J. Virol.
, vol.77
, pp. 12865-12874
-
-
Gummuluru, S.1
-
94
-
-
0036314488
-
Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells
-
Sanders R.W., et al. Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J. Virol. 2002, 76:7812-7821.
-
(2002)
J. Virol.
, vol.76
, pp. 7812-7821
-
-
Sanders, R.W.1
-
95
-
-
12144290772
-
Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells
-
Turville S.G., et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 2004, 103:2170-2179.
-
(2004)
Blood
, vol.103
, pp. 2170-2179
-
-
Turville, S.G.1
-
96
-
-
84871678979
-
Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides
-
Izquierdo-Useros N., et al. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012, 10:e1001448.
-
(2012)
PLoS Biol.
, vol.10
-
-
Izquierdo-Useros, N.1
-
97
-
-
33846495455
-
In vitro derived dendritic cells trans-infect CD4 T cells primarily with surface-bound HIV-1 virions
-
Cavrois M., et al. In vitro derived dendritic cells trans-infect CD4 T cells primarily with surface-bound HIV-1 virions. PLoS Pathog. 2007, 3:e4.
-
(2007)
PLoS Pathog.
, vol.3
-
-
Cavrois, M.1
-
98
-
-
54049145445
-
Macropinocytosis and cytoskeleton contribute to dendritic cell-mediated HIV-1 transmission to CD4+ T cells
-
Wang J.H., et al. Macropinocytosis and cytoskeleton contribute to dendritic cell-mediated HIV-1 transmission to CD4+ T cells. Virology 2008, 381:143-154.
-
(2008)
Virology
, vol.381
, pp. 143-154
-
-
Wang, J.H.1
-
99
-
-
0036172314
-
DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection
-
Kwon D.S., et al. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 2002, 16:135-144.
-
(2002)
Immunity
, vol.16
, pp. 135-144
-
-
Kwon, D.S.1
-
100
-
-
46449129399
-
The achilles heel of the trojan horse model of HIV-1 trans-infection
-
Cavrois M., et al. The achilles heel of the trojan horse model of HIV-1 trans-infection. PLoS Pathog. 2008, 4:e1000051.
-
(2008)
PLoS Pathog.
, vol.4
-
-
Cavrois, M.1
-
101
-
-
84875989411
-
Dendritic cell-induced activation of latent HIV-1 provirus in actively proliferating primary T lymphocytes
-
van der Sluis R.M., et al. Dendritic cell-induced activation of latent HIV-1 provirus in actively proliferating primary T lymphocytes. PLoS Pathog. 2013, 9:e1003259.
-
(2013)
PLoS Pathog.
, vol.9
-
-
van der Sluis, R.M.1
-
102
-
-
77955415540
-
Manipulation of dendritic cell function by viruses
-
Cunningham A.L., et al. Manipulation of dendritic cell function by viruses. Curr. Opin. Microbiol. 2010, 13:524-529.
-
(2010)
Curr. Opin. Microbiol.
, vol.13
, pp. 524-529
-
-
Cunningham, A.L.1
-
103
-
-
79251483474
-
Ebolavirus VP35 is a multifunctional virulence factor
-
Leung D.W., et al. Ebolavirus VP35 is a multifunctional virulence factor. Virulence 2010, 1:526-531.
-
(2010)
Virulence
, vol.1
, pp. 526-531
-
-
Leung, D.W.1
-
104
-
-
4043053773
-
Pathogenesis of filoviral haemorrhagic fevers
-
Mahanty S., Bray M. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect. Dis. 2004, 4:487-498.
-
(2004)
Lancet Infect. Dis.
, vol.4
, pp. 487-498
-
-
Mahanty, S.1
Bray, M.2
-
105
-
-
40149109042
-
Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of Ebola virus
-
Hartman A.L., et al. Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of Ebola virus. J. Virol. 2008, 82:2699-2704.
-
(2008)
J. Virol.
, vol.82
, pp. 2699-2704
-
-
Hartman, A.L.1
-
106
-
-
0032715788
-
Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion
-
Engelmayer J., et al. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J. Immunol. 1999, 163:6762-6768.
-
(1999)
J. Immunol.
, vol.163
, pp. 6762-6768
-
-
Engelmayer, J.1
-
107
-
-
13544268716
-
Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells
-
Bosnjak L., et al. Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J. Immunol. 2005, 174:2220-2227.
-
(2005)
J. Immunol.
, vol.174
, pp. 2220-2227
-
-
Bosnjak, L.1
-
108
-
-
84871399974
-
Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells
-
Smed-Sorensen A., et al. Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells. PLoS Pathog. 2012, 8:e1002572.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Smed-Sorensen, A.1
-
109
-
-
84878960401
-
Nontransformed, GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage functions
-
Fejer G., et al. Nontransformed, GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage functions. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E2191-E2198.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
-
-
Fejer, G.1
|