메뉴 건너뛰기




Volumn 8, Issue 8, 2013, Pages

The First Transmembrane Domain of Lipid Phosphatase SAC1 Promotes Golgi Localization

Author keywords

[No Author keywords available]

Indexed keywords

LIPID PHOSPHATASE SAC1; PHOSPHATASE; TRANSFERRIN RECEPTOR 2; UNCLASSIFIED DRUG;

EID: 84881006698     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0071112     Document Type: Article
Times cited : (11)

References (30)
  • 1
    • 40849147336 scopus 로고    scopus 로고
    • Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1
    • Blagoveshchenskaya A, Cheong FY, Rohde HM, Glover G, Knodler A, et al. (2008) Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J Cell Biol 180: 803-812.
    • (2008) J Cell Biol , vol.180 , pp. 803-812
    • Blagoveshchenskaya, A.1    Cheong, F.Y.2    Rohde, H.M.3    Glover, G.4    Knodler, A.5
  • 2
    • 79551674131 scopus 로고    scopus 로고
    • Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites
    • Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, et al. (2011) Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144: 389-401.
    • (2011) Cell , vol.144 , pp. 389-401
    • Stefan, C.J.1    Manford, A.G.2    Baird, D.3    Yamada-Hanff, J.4    Mao, Y.5
  • 3
    • 51349106229 scopus 로고    scopus 로고
    • The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals
    • Liu Y, Boukhelifa M, Tribble E, Morin-Kensicki E, Uetrecht A, et al. (2008) The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Mol Biol Cell 19: 3080-3096.
    • (2008) Mol Biol Cell , vol.19 , pp. 3080-3096
    • Liu, Y.1    Boukhelifa, M.2    Tribble, E.3    Morin-Kensicki, E.4    Uetrecht, A.5
  • 4
    • 0037155823 scopus 로고    scopus 로고
    • Retention of the yeast Sac1p phosphatase in the endoplasmic reticulum causes distinct changes in cellular phosphoinositide levels and stimulates microsomal ATP transport
    • Konrad G, Schlecker T, Faulhammer F, Mayinger P, (2002) Retention of the yeast Sac1p phosphatase in the endoplasmic reticulum causes distinct changes in cellular phosphoinositide levels and stimulates microsomal ATP transport. J Biol Chem 277: 10547-10554.
    • (2002) J Biol Chem , vol.277 , pp. 10547-10554
    • Konrad, G.1    Schlecker, T.2    Faulhammer, F.3    Mayinger, P.4
  • 5
    • 77951978964 scopus 로고    scopus 로고
    • Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function
    • Manford A, Xia T, Saxena AK, Stefan C, Hu F, et al. (2010) Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J 29: 1489-1498.
    • (2010) EMBO J , vol.29 , pp. 1489-1498
    • Manford, A.1    Xia, T.2    Saxena, A.K.3    Stefan, C.4    Hu, F.5
  • 6
    • 80054729346 scopus 로고    scopus 로고
    • COPII and COPI traffic at the ER-Golgi interface
    • Szul T, Sztul E, (2011) COPII and COPI traffic at the ER-Golgi interface. Physiology (Bethesda) 26: 348-364.
    • (2011) Physiology (Bethesda) , vol.26 , pp. 348-364
    • Szul, T.1    Sztul, E.2
  • 7
    • 77955254159 scopus 로고    scopus 로고
    • Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity
    • Cheong FY, Sharma V, Blagoveshchenskaya A, Oorschot VM, Brankatschk B, et al. (2010) Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic 11: 1180-1190.
    • (2010) Traffic , vol.11 , pp. 1180-1190
    • Cheong, F.Y.1    Sharma, V.2    Blagoveshchenskaya, A.3    Oorschot, V.M.4    Brankatschk, B.5
  • 8
    • 0346732283 scopus 로고    scopus 로고
    • The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex
    • Rohde HM, Cheong FY, Konrad G, Paiha K, Mayinger P, et al. (2003) The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem 278: 52689-52699.
    • (2003) J Biol Chem , vol.278 , pp. 52689-52699
    • Rohde, H.M.1    Cheong, F.Y.2    Konrad, G.3    Paiha, K.4    Mayinger, P.5
  • 9
    • 84863860778 scopus 로고    scopus 로고
    • Mechanisms of protein retention in the Golgi
    • Banfield DK, (2011) Mechanisms of protein retention in the Golgi. Cold Spring Harb Perspect Biol 3: a005264.
    • (2011) Cold Spring Harb Perspect Biol , vol.3
    • Banfield, D.K.1
  • 10
    • 0031040995 scopus 로고    scopus 로고
    • Golgi localization of glycosyltransferases: more questions than answers
    • Colley KJ, (1997) Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7: 1-13.
    • (1997) Glycobiology , vol.7 , pp. 1-13
    • Colley, K.J.1
  • 11
    • 0031976015 scopus 로고    scopus 로고
    • Localization of proteins to the Golgi apparatus
    • Munro S, (1998) Localization of proteins to the Golgi apparatus. Trends Cell Biol 8: 11-15.
    • (1998) Trends Cell Biol , vol.8 , pp. 11-15
    • Munro, S.1
  • 12
    • 0027892019 scopus 로고
    • Cholesterol and the Golgi apparatus
    • Bretscher MS, Munro S, (1993) Cholesterol and the Golgi apparatus. Science 261: 1280-1281.
    • (1993) Science , vol.261 , pp. 1280-1281
    • Bretscher, M.S.1    Munro, S.2
  • 13
    • 0027248612 scopus 로고
    • Oligomerization of a membrane protein correlates with its retention in the Golgi complex
    • Weisz OA, Swift AM, Machamer CE, (1993) Oligomerization of a membrane protein correlates with its retention in the Golgi complex. J Cell Biol 122: 1185-1196.
    • (1993) J Cell Biol , vol.122 , pp. 1185-1196
    • Weisz, O.A.1    Swift, A.M.2    Machamer, C.E.3
  • 14
    • 0027269974 scopus 로고
    • Sac1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast
    • Whitters EA, Cleves AE, McGee TP, Skinner HB, Bankaitis VA, (1993) Sac1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol 122: 79-94.
    • (1993) J Cell Biol , vol.122 , pp. 79-94
    • Whitters, E.A.1    Cleves, A.E.2    McGee, T.P.3    Skinner, H.B.4    Bankaitis, V.A.5
  • 15
    • 0033018150 scopus 로고    scopus 로고
    • A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum
    • Nishimura N, Bannykh S, Slabough S, Matteson J, Altschuler Y, et al. (1999) A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum. J Biol Chem 274: 15937-15946.
    • (1999) J Biol Chem , vol.274 , pp. 15937-15946
    • Nishimura, N.1    Bannykh, S.2    Slabough, S.3    Matteson, J.4    Altschuler, Y.5
  • 16
    • 33947111426 scopus 로고    scopus 로고
    • Transferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway
    • Johnson MB, Chen J, Murchison N, Green FA, Enns CA, (2007) Transferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway. Mol Biol Cell 18: 743-754.
    • (2007) Mol Biol Cell , vol.18 , pp. 743-754
    • Johnson, M.B.1    Chen, J.2    Murchison, N.3    Green, F.A.4    Enns, C.A.5
  • 17
    • 70350391658 scopus 로고    scopus 로고
    • Transferrin-directed internalization and cycling of transferrin receptor 2
    • Chen J, Wang J, Meyers KR, Enns CA, (2009) Transferrin-directed internalization and cycling of transferrin receptor 2. Traffic 10: 1488-1501.
    • (2009) Traffic , vol.10 , pp. 1488-1501
    • Chen, J.1    Wang, J.2    Meyers, K.R.3    Enns, C.A.4
  • 18
    • 0025940737 scopus 로고
    • A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein
    • Swift AM, Machamer CE, (1991) A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J Cell Biol 115: 19-30.
    • (1991) J Cell Biol , vol.115 , pp. 19-30
    • Swift, A.M.1    Machamer, C.E.2
  • 19
    • 0029165107 scopus 로고
    • An investigation of the role of transmembrane domains in Golgi protein retention
    • Munro S, (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 14: 4695-4704.
    • (1995) EMBO J , vol.14 , pp. 4695-4704
    • Munro, S.1
  • 20
    • 0026607683 scopus 로고
    • Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain
    • Aoki D, Lee N, Yamaguchi N, Dubois C, Fukuda MN, (1992) Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain. Proc Natl Acad Sci U S A 89: 4319-4323.
    • (1992) Proc Natl Acad Sci U S A , vol.89 , pp. 4319-4323
    • Aoki, D.1    Lee, N.2    Yamaguchi, N.3    Dubois, C.4    Fukuda, M.N.5
  • 21
    • 0029067675 scopus 로고
    • Golgi retention mechanism of beta-1,4-galactosyltransferase. Membrane-spanning domain-dependent homodimerization and association with alpha- and beta-tubulins
    • Yamaguchi N, Fukuda MN, (1995) Golgi retention mechanism of beta-1,4-galactosyltransferase. Membrane-spanning domain-dependent homodimerization and association with alpha- and beta-tubulins. J Biol Chem 270: 12170-12176.
    • (1995) J Biol Chem , vol.270 , pp. 12170-12176
    • Yamaguchi, N.1    Fukuda, M.N.2
  • 22
    • 0035800822 scopus 로고    scopus 로고
    • Location and mechanism of alpha 2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing
    • Qian R, Chen C, Colley KJ, (2001) Location and mechanism of alpha 2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing. J Biol Chem 276: 28641-28649.
    • (2001) J Biol Chem , vol.276 , pp. 28641-28649
    • Qian, R.1    Chen, C.2    Colley, K.J.3
  • 23
    • 4544348216 scopus 로고    scopus 로고
    • The stem region of the sulfotransferase GlcNAc6ST-1 is a determinant of substrate specificity
    • de Graffenried CL, Bertozzi CR, (2004) The stem region of the sulfotransferase GlcNAc6ST-1 is a determinant of substrate specificity. J Biol Chem 279: 40035-40043.
    • (2004) J Biol Chem , vol.279 , pp. 40035-40043
    • de Graffenried, C.L.1    Bertozzi, C.R.2
  • 24
    • 0023580390 scopus 로고
    • A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region
    • Machamer CE, Rose JK, (1987) A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J Cell Biol 105: 1205-1214.
    • (1987) J Cell Biol , vol.105 , pp. 1205-1214
    • Machamer, C.E.1    Rose, J.K.2
  • 25
    • 0025946217 scopus 로고
    • Golgi retention signals: do membranes hold the key?
    • Machamer CE, (1991) Golgi retention signals: do membranes hold the key? Trends Cell Biol. 1: 141-144.
    • (1991) Trends Cell Biol , vol.1 , pp. 141-144
    • Machamer, C.E.1
  • 26
    • 0026598516 scopus 로고
    • The 17-residue transmembrane domain of beta-galactoside alpha 2,6-sialyltransferase is sufficient for Golgi retention
    • Wong SH, Low SH, Hong W, (1992) The 17-residue transmembrane domain of beta-galactoside alpha 2,6-sialyltransferase is sufficient for Golgi retention. J Cell Biol 117: 245-258.
    • (1992) J Cell Biol , vol.117 , pp. 245-258
    • Wong, S.H.1    Low, S.H.2    Hong, W.3
  • 27
    • 77954299061 scopus 로고    scopus 로고
    • A comprehensive comparison of transmembrane domains reveals organelle-specific properties
    • Sharpe HJ, Stevens TJ, Munro S, (2010) A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142: 158-169.
    • (2010) Cell , vol.142 , pp. 158-169
    • Sharpe, H.J.1    Stevens, T.J.2    Munro, S.3
  • 28
    • 84863533942 scopus 로고    scopus 로고
    • Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase
    • Wood CS, Hung CS, Huoh YS, Mousley CJ, Stefan CJ, et al. (2012) Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase. Mol Biol Cell 23: 2527-2536.
    • (2012) Mol Biol Cell , vol.23 , pp. 2527-2536
    • Wood, C.S.1    Hung, C.S.2    Huoh, Y.S.3    Mousley, C.J.4    Stefan, C.J.5
  • 29
    • 70349835304 scopus 로고    scopus 로고
    • GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding
    • Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, et al. (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139: 337-351.
    • (2009) Cell , vol.139 , pp. 337-351
    • Dippold, H.C.1    Ng, M.M.2    Farber-Katz, S.E.3    Lee, S.K.4    Kerr, M.L.5
  • 30
    • 35348910763 scopus 로고    scopus 로고
    • Growth control of Golgi phosphoinositides by reciprocal localization of Sac1 lipid phosphatase and Pik1 4-kinase
    • Faulhammer F, Kanjilal-Kolar S, Knodler A, Lo J, Lee Y, et al. (2007) Growth control of Golgi phosphoinositides by reciprocal localization of Sac1 lipid phosphatase and Pik1 4-kinase. Traffic 8: 1554-1567.
    • (2007) Traffic , vol.8 , pp. 1554-1567
    • Faulhammer, F.1    Kanjilal-Kolar, S.2    Knodler, A.3    Lo, J.4    Lee, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.