메뉴 건너뛰기




Volumn 6, Issue 4, 2013, Pages 302-314

Regularized partial least squares with an application to NMR pectroscopy

Author keywords

Generalized PCA; Generalized PLS; NMR spectroscopy; Non negative PLS; Sparse PCA; Sparse PLS

Indexed keywords

CLUSTERING ALGORITHMS; LEAST SQUARES APPROXIMATIONS; MOLECULAR BIOLOGY;

EID: 84880992283     PISSN: 19321872     EISSN: 19321864     Source Type: Journal    
DOI: 10.1002/sam.11169     Document Type: Article
Times cited : (41)

References (42)
  • 1
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • D. Nguyen and D. Rocke, Tumor classification by partial least squares using microarray gene expression data, Bioinformatics 18(1) (2002), 39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.1    Rocke, D.2
  • 2
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: a versatile tool for the analysis of high-dimensional genomic data
    • A. Boulesteix and K. Strimmer, Partial least squares: a versatile tool for the analysis of high-dimensional genomic data, Brief Bioinform 8(1) (2007), 32.
    • (2007) Brief Bioinform , vol.8 , pp. 32
    • Boulesteix, A.1    Strimmer, K.2
  • 4
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • H. Chun and S. Keleş, Sparse partial least squares regression for simultaneous dimension reduction and variable selection, J Roy Stat Soc Ser B 72(1) (2010), 3-25.
    • (2010) J Roy Stat Soc Ser B , vol.72 , pp. 3-25
    • Chun, H.1    Keleş, S.2
  • 5
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • H. Wold, Estimation of principal components and related models by iterative least squares, Multivariate Anal 1 (1966), 391-420.
    • (1966) Multivariate Anal , vol.1 , pp. 391-420
    • Wold, H.1
  • 6
    • 0027530250 scopus 로고
    • SIMPLS: an alternative approach to partial least squares regression
    • S. de Jong, SIMPLS: an alternative approach to partial least squares regression, Chemomet Intell Lab Syst 18(3) (1993), 251-263.
    • (1993) Chemomet Intell Lab Syst , vol.18 , pp. 251-263
    • de Jong, S.1
  • 7
    • 0242718698 scopus 로고    scopus 로고
    • Iteratively reweighted partial least squares estimation for generalized linear regression
    • B. Marx, Iteratively reweighted partial least squares estimation for generalized linear regression, Technometrics (1996), 374-381.
    • (1996) Technometrics , pp. 374-381
    • Marx, B.1
  • 8
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • M. Barker and W. Rayens, Partial least squares for discrimination, J Chemomet 17(3) (2003), 166-173.
    • (2003) J Chemomet , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 9
    • 79959258968 scopus 로고    scopus 로고
    • Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems
    • K. Lê Cao, S. Boitard, and P. Besse, Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems, BMC Bioinform 12(1) (2011), 253.
    • (2011) BMC Bioinform , vol.12 , pp. 253
    • Lê Cao, K.1    Boitard, S.2    Besse, P.3
  • 10
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • I. Johnstone and A. Lu, On consistency and sparsity for principal components analysis in high dimensions, J Am Stat Assoc 104(486) (2009), 682-693.
    • (2009) J Am Stat Assoc , vol.104 , pp. 682-693
    • Johnstone, I.1    Lu, A.2
  • 11
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • S. Jung and J. Marron, PCA consistency in high dimension, low sample size context, Ann Stat 37(6B) (2009), 4104-4130.
    • (2009) Ann Stat , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.2
  • 12
    • 27644451742 scopus 로고    scopus 로고
    • The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration
    • B. Nadler and R. Coifman, The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration, J Chemomet 19(2) (2005), 107-118.
    • (2005) J Chemomet , vol.19 , pp. 107-118
    • Nadler, B.1    Coifman, R.2
  • 13
    • 69049101180 scopus 로고    scopus 로고
    • High-dimensional analysis of semidefinite relaxations for sparse principal components
    • A. Amini and M. Wainwright, High-dimensional analysis of semidefinite relaxations for sparse principal components, Ann Stat 37(5B) (2009), 2877-2921.
    • (2009) Ann Stat , vol.37 , pp. 2877-2921
    • Amini, A.1    Wainwright, M.2
  • 14
    • 85196104692 scopus 로고    scopus 로고
    • Sparse PCA asymptotics and analysis of tree data, Ph.D. Thesis, University of North Carolina
    • D. Shen, Sparse PCA asymptotics and analysis of tree data, Ph.D. Thesis, University of North Carolina, 2012.
    • (2012)
    • Shen, D.1
  • 15
    • 54549091125 scopus 로고    scopus 로고
    • Systems biology: metabonomics
    • J. Nicholson and J. Lindon, Systems biology: metabonomics, Nature 455(7216) (2008), 1054-1056.
    • (2008) Nature , vol.455 , pp. 1054-1056
    • Nicholson, J.1    Lindon, J.2
  • 17
    • 1942470073 scopus 로고    scopus 로고
    • Metabolomics by numbers: acquiring and understanding global metabolite data
    • R. Goodacre, S. Vaidyanathan, W. Dunn, G. Harrigan, and D. Kell, Metabolomics by numbers: acquiring and understanding global metabolite data, Trends Biotechnol 22(5) (2004), 245-252.
    • (2004) Trends Biotechnol , vol.22 , pp. 245-252
    • Goodacre, R.1    Vaidyanathan, S.2    Dunn, W.3    Harrigan, G.4    Kell, D.5
  • 18
    • 18844406001 scopus 로고    scopus 로고
    • Measuring the metabolome: current analytical technologies
    • W. Dunn, N. Bailey, and H. Johnson, Measuring the metabolome: current analytical technologies, Analyst 130(5) (2005), 606-625.
    • (2005) Analyst , vol.130 , pp. 606-625
    • Dunn, W.1    Bailey, N.2    Johnson, H.3
  • 19
    • 0030539889 scopus 로고    scopus 로고
    • Partial least squares regression on smooth factors
    • C. Goutis and T. Fearn, Partial least squares regression on smooth factors, J Am Stat Assoc 91(434) (1996), 627-632.
    • (1996) J Am Stat Assoc , vol.91 , pp. 627-632
    • Goutis, C.1    Fearn, T.2
  • 20
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • P. Reiss and R. Ogden, Functional principal component regression and functional partial least squares, J Am Stat Assoc 102(479) (2007), 984-996.
    • (2007) J Am Stat Assoc , vol.102 , pp. 984-996
    • Reiss, P.1    Ogden, R.2
  • 22
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • H. Shen and J. Huang, Sparse principal component analysis via regularized low rank matrix approximation, J Multivariate Anal 99(6) (2008), 1015-1034.
    • (2008) J Multivariate Anal , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.2
  • 23
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • D. Witten, R. Tibshirani, and T. Hastie, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics 10(3) (2009), 515.
    • (2009) Biostatistics , vol.10 , pp. 515
    • Witten, D.1    Tibshirani, R.2    Hastie, T.3
  • 24
    • 85196092070 scopus 로고    scopus 로고
    • A generalized least squares matrix decomposition, Rice University Technical Report No. TR2011-03
    • G. I. Allen, L. Grosenick, and J. Taylor, A generalized least squares matrix decomposition, Rice University Technical Report No. TR2011-03, 2011.
    • (2011)
    • Allen, G.I.1    Grosenick, L.2    Taylor, J.3
  • 25
    • 78650059908 scopus 로고    scopus 로고
    • Biclustering via sparse singular value decomposition
    • M. Lee, H. Shen, J. Huang, and J. Marron, Biclustering via sparse singular value decomposition, Biometrics 66(4) (2010), 1087-1095.
    • (2010) Biometrics , vol.66 , pp. 1087-1095
    • Lee, M.1    Shen, H.2    Huang, J.3    Marron, J.4
  • 26
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J Roy Stat Soc Ser B 58(1) (1996), 267-288.
    • (1996) J Roy Stat Soc Ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J Roy Stat Soc Ser B 68(1) (2006), 49-67.
    • (2006) J Roy Stat Soc Ser B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 29
    • 77949582327 scopus 로고    scopus 로고
    • Minimax rates of convergence for high-dimensional regression under LQ-ball sparsity, In 47th Annual Allerton Conference on Communication, Control, and Computing, 2009, Allerton 2009
    • G. Raskutti, M. Wainwright, and B. Yu, Minimax rates of convergence for high-dimensional regression under LQ-ball sparsity, In 47th Annual Allerton Conference on Communication, Control, and Computing, 2009, Allerton 2009, 2009, 251-257.
    • (2009) , pp. 251-257
    • Raskutti, G.1    Wainwright, M.2    Yu, B.3
  • 30
    • 34347207585 scopus 로고    scopus 로고
    • An overview on the shrinkage properties of partial least squares regression
    • N. Krämer, An overview on the shrinkage properties of partial least squares regression, Comput Stat 22(2) (2007), 249-273.
    • (2007) Comput Stat , vol.22 , pp. 249-273
    • Krämer, N.1
  • 31
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J Stat Softw 33(1) (2010), 1.
    • (2010) J Stat Softw , vol.33 , pp. 1
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 32
    • 71549165598 scopus 로고    scopus 로고
    • Bi-cross-validation of the SVD and the nonnegative matrix factorization
    • A. Owen and P. Perry, Bi-cross-validation of the SVD and the nonnegative matrix factorization, Annals 3(2) (2009), 564-594.
    • (2009) Annals , vol.3 , pp. 564-594
    • Owen, A.1    Perry, P.2
  • 33
    • 2342442343 scopus 로고    scopus 로고
    • Modeling the relationship between LVAD support time and gene expression changes in the human heart by penalized partial least squares
    • X. Huang, W. Pan, S. Park, X. Han, L. Miller, and J. Hall, Modeling the relationship between LVAD support time and gene expression changes in the human heart by penalized partial least squares, Bioinformatics 20(6) (2004), 888-894.
    • (2004) Bioinformatics , vol.20 , pp. 888-894
    • Huang, X.1    Pan, W.2    Park, S.3    Han, X.4    Miller, L.5    Hall, J.6
  • 35
    • 77950530973 scopus 로고    scopus 로고
    • Sparse partial least squares classification for high dimensional data
    • D. Chung and S. Keles, Sparse partial least squares classification for high dimensional data, Stat Appl Genet Mol Biol 9(1) (2010).
    • (2010) Stat Appl Genet Mol Biol , vol.9
    • Chung, D.1    Keles, S.2
  • 36
    • 80054949794 scopus 로고    scopus 로고
    • Sparse non-negative generalized PCA with applications to metabolomics
    • G. Allen and M. Maletić-Savatić, Sparse non-negative generalized PCA with applications to metabolomics, Bioinformatics 27(21) (2011), 3029-3035.
    • (2011) Bioinformatics , vol.27 , pp. 3029-3035
    • Allen, G.1    Maletić-Savatić, M.2
  • 37
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401(6755) (1999), 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 38
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer, Non-negative matrix factorization with sparseness constraints, J Mach Learn Res 5 (2004), 1457-1469.
    • (2004) J Mach Learn Res , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 39
    • 85196070872 scopus 로고    scopus 로고
    • SPLS: Sparse Partial Least Squares (SPLS) Regression and Classification, R package, version 2.1-1
    • D. Chung, H. Chun, and S. Keles, SPLS: Sparse Partial Least Squares (SPLS) Regression and Classification, R package, version 2.1-1, 2012.
    • (2012)
    • Chung, D.1    Chun, H.2    Keles, S.3
  • 41
    • 33645527646 scopus 로고    scopus 로고
    • Prediction by supervised principal components
    • E. Bair, T. Hastie, D. Paul, and R. Tibshirani, Prediction by supervised principal components, J Am Stat Assoc 101(473) (2006), 119-137.
    • (2006) J Am Stat Assoc , vol.101 , pp. 119-137
    • Bair, E.1    Hastie, T.2    Paul, D.3    Tibshirani, R.4
  • 42
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • D. Nguyen and D. Rocke, Partial least squares proportional hazard regression for application to DNA microarray survival data, Bioinformatics 18(12) (2002), 1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.1    Rocke, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.