메뉴 건너뛰기




Volumn 23, Issue 2, 2013, Pages 381-389

Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network

Author keywords

Artificial neural network; Multivariable regression; Sensitivity analysis; Unconfined compressive strength

Indexed keywords

COMPRESSIVE STRENGTH; HARDNESS; POROSITY; PREDICTIVE ANALYTICS; REGRESSION ANALYSIS; ROCKS; SENSITIVITY ANALYSIS;

EID: 84880751933     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-0925-2     Document Type: Article
Times cited : (79)

References (46)
  • 1
    • 0016036941 scopus 로고
    • Estimating the strength of rock materials
    • Bieniawski ZT (1974) Estimating the strength of rock materials. J S Afr Inst Min Metall 74: 312-320.
    • (1974) J S Afr Inst Min Metall , vol.74 , pp. 312-320
    • Bieniawski, Z.T.1
  • 2
    • 0002645682 scopus 로고
    • Weathering and its relation to mechanical properties of granite
    • Denver, USA
    • Onodera TF, Yoshinaka R, Oda M (1974) Weathering and its relation to mechanical properties of granite. In: Proceedings of the 3rd congress of ISRM, vol II(A), Denver, USA, pp 71-78.
    • (1974) Proceedings of the 3rd congress of ISRM , vol.II , Issue.A , pp. 71-78
    • Onodera, T.F.1    Yoshinaka, R.2    Oda, M.3
  • 3
    • 0018518829 scopus 로고
    • Estimating strength of sandstones using petrographic thin-section data
    • Fahy MP, Guccione MJ (1979) Estimating strength of sandstones using petrographic thin-section data. Bull Assoc Eng Geol 16(4): 467-485.
    • (1979) Bull Assoc Eng Geol , vol.16 , Issue.4 , pp. 467-485
    • Fahy, M.P.1    Guccione, M.J.2
  • 4
    • 0035386105 scopus 로고    scopus 로고
    • Some microstructural aspects of strength variation in rocks
    • Prikryl R (2001) Some microstructural aspects of strength variation in rocks. Int J Rock Mech Min Sci 38: 671-682.
    • (2001) Int J Rock Mech Min Sci , vol.38 , pp. 671-682
    • Prikryl, R.1
  • 5
    • 38349077120 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of sandstones using petrography-based models
    • Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96: 141-158.
    • (2008) Eng Geol , vol.96 , pp. 141-158
    • Zorlu, K.1    Gokceoglu, C.2    Ocakoglu, F.3    Nefeslioglu, H.A.4    Acikalin, S.5
  • 6
    • 78751604817 scopus 로고    scopus 로고
    • Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network
    • Cevik A, Sezer EA, Cabalar AF, Gokceoglu C (2011) Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl Soft Comput 11: 2587-2594.
    • (2011) Appl Soft Comput , vol.11 , pp. 2587-2594
    • Cevik, A.1    Sezer, E.A.2    Cabalar, A.F.3    Gokceoglu, C.4
  • 7
    • 0022044185 scopus 로고
    • Suggested method for determining point load strength
    • ISRM
    • ISRM (1985) Suggested method for determining point load strength. Int J Rock Mech Min Sci Geomech Abstr 22: 51-60.
    • (1985) Int J Rock Mech Min Sci Geomech Abstr , vol.22 , pp. 51-60
  • 9
    • 59749092543 scopus 로고    scopus 로고
    • Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient
    • Alber M, Kahraman S (2009) Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mech Rock Enggnog 42: 117-127.
    • (2009) Rock Mech Rock Enggnog , vol.42 , pp. 117-127
    • Alber, M.1    Kahraman, S.2
  • 10
    • 76349124880 scopus 로고    scopus 로고
    • Nail penetration test for determining the uniaxial compressive strength of rock
    • Kayabali K, Selcuk L (2010) Nail penetration test for determining the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 47: 265-271.
    • (2010) Int J Rock Mech Min Sci , vol.47 , pp. 265-271
    • Kayabali, K.1    Selcuk, L.2
  • 11
    • 0035492232 scopus 로고    scopus 로고
    • Evaluation of simple methods for assessing the uniaxial compressive strength of rock
    • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38(7): 981-994.
    • (2001) Int J Rock Mech Min Sci , vol.38 , Issue.7 , pp. 981-994
    • Kahraman, S.1
  • 12
    • 0002681552 scopus 로고
    • Relationship between petrographic characteristics, engineering index properties and mechanical properties of selected sandstone
    • Shakoor A, Bonelli RE (1991) Relationship between petrographic characteristics, engineering index properties and mechanical properties of selected sandstone. Bull Assoc Eng Geol 28(1): 55-71.
    • (1991) Bull Assoc Eng Geol , vol.28 , Issue.1 , pp. 55-71
    • Shakoor, A.1    Bonelli, R.E.2
  • 13
    • 1542644665 scopus 로고    scopus 로고
    • Considerations on strength of intact sedimentary rocks
    • Tsiambaos G, Sabatakakis N (2004) Considerations on strength of intact sedimentary rocks. Eng Geol 72: 261-273.
    • (2004) Eng Geol , vol.72 , pp. 261-273
    • Tsiambaos, G.1    Sabatakakis, N.2
  • 15
    • 0036837178 scopus 로고    scopus 로고
    • Correlation of Schmidt hardness with unconfined compressive strength and young modulus in gypsum from Sivas (Turkey)
    • Yilmaz I, Sendir H (2002) Correlation of Schmidt hardness with unconfined compressive strength and young modulus in gypsum from Sivas (Turkey). Eng Geol 66: 211-219.
    • (2002) Eng Geol , vol.66 , pp. 211-219
    • Yilmaz, I.1    Sendir, H.2
  • 16
    • 23844534738 scopus 로고    scopus 로고
    • A comparative evaluation of indirect methods to estimate the compressive strength of rocks
    • Fener M, Kahraman S, Bilgil A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eggnog 38(4): 329-334.
    • (2005) Rock Mech Rock Eggnog , vol.38 , Issue.4 , pp. 329-334
    • Fener, M.1    Kahraman, S.2    Bilgil, A.3    Gunaydin, O.4
  • 17
    • 3042636949 scopus 로고    scopus 로고
    • Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate
    • Sonmez H, Tuncay E, Gokceoglu C (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int J Rock Mech Min Sci 41(5): 717-729.
    • (2004) Int J Rock Mech Min Sci , vol.41 , Issue.5 , pp. 717-729
    • Sonmez, H.1    Tuncay, E.2    Gokceoglu, C.3
  • 19
    • 84861573004 scopus 로고    scopus 로고
    • Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing
    • doi:10.1007/s00603-011-0196-8
    • Heidari M, Khanlari GR, Torabi Kaveh M, Kargarian S (2011) Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock Mech Rock Eng. doi: 10. 1007/s00603-011-0196-8.
    • (2011) Rock Mech Rock Eng
    • Heidari, M.1    Khanlari, G.R.2    Torabi Kaveh, M.3    Kargarian, S.4
  • 20
    • 3042636937 scopus 로고    scopus 로고
    • Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks
    • Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks. Int J Rock Mech Min Sci 41(5): 871-875.
    • (2004) Int J Rock Mech Min Sci , vol.41 , Issue.5 , pp. 871-875
    • Yasar, E.1    Erdogan, Y.2
  • 21
    • 76249108297 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks
    • Dehghan S, Sattari Gh, Chehreh Chelgani S, Aliabadi MA (2010) Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Mini Sci Technol 20(1): 0041-0046.
    • (2010) Mini Sci Technol , vol.20 , Issue.1 , pp. 0041-0046
    • Dehghan, S.1    Sattari, G.2    Chehreh Chelgani, S.3    Aliabadi, M.A.4
  • 22
    • 0027812561 scopus 로고
    • Estimating rock strength with the Equotip hardness tester
    • Verwaal W, Mulder A (1993) Estimating rock strength with the Equotip hardness tester. Int J Rock Mech Min Sci Geomech Abstr 30(6): 659-662.
    • (1993) Int J Rock Mech Min Sci Geomech Abstr , vol.30 , Issue.6 , pp. 659-662
    • Verwaal, W.1    Mulder, A.2
  • 24
    • 0032768798 scopus 로고    scopus 로고
    • Fuzzy model for the prediction of unconfined compressive strength of rock samples
    • Alvarez Grimaa M, Babuska R (1999) Fuzzy model for the prediction of unconfined compressive strength of rock samples. Int J Rock Mech Min Sci 36: 339-349.
    • (1999) Int J Rock Mech Min Sci , vol.36 , pp. 339-349
    • Alvarez Grimaa, M.1    Babuska, R.2
  • 25
    • 23144454219 scopus 로고    scopus 로고
    • Application of artificial neural network in mining industry
    • Khandelwal M, Roy MP, Singh PK (2004) Application of artificial neural network in mining industry. Ind Min Eng J 43: 19-23.
    • (2004) Ind Min Eng J , vol.43 , pp. 19-23
    • Khandelwal, M.1    Roy, M.P.2    Singh, P.K.3
  • 26
    • 0035251579 scopus 로고    scopus 로고
    • Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks
    • Singh VK, Singh D, Singh TN (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 38(2): 269-284.
    • (2001) Int J Rock Mech Min Sci , vol.38 , Issue.2 , pp. 269-284
    • Singh, V.K.1    Singh, D.2    Singh, T.N.3
  • 27
    • 56349113372 scopus 로고    scopus 로고
    • An example of artificial neural network (ANN) application for indirect estimation of rock parameters
    • Yi{dotless}lmaz I, Yuksek AG (2008) An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5): 781-795.
    • (2008) Rock Mech Rock Eng , vol.41 , Issue.5 , pp. 781-795
    • Yilmaz, I.1    Yuksek, A.G.2
  • 28
    • 43649100157 scopus 로고    scopus 로고
    • Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks and regression trees
    • Tiryaki B (2008) Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks and regression trees. Eng Geol 99: 51-60.
    • (2008) Eng Geol , vol.99 , pp. 51-60
    • Tiryaki, B.1
  • 29
    • 0033844049 scopus 로고    scopus 로고
    • Using artificial intelligence to predict permeability from petrographic data
    • Ali M, Chawathe A (2000) Using artificial intelligence to predict permeability from petrographic data. Comput Geosci 26: 915-925.
    • (2000) Comput Geosci , vol.26 , pp. 915-925
    • Ali, M.1    Chawathe, A.2
  • 30
    • 84865620526 scopus 로고    scopus 로고
    • Artificial neural network for prediction of air flow in a single rock joint
    • doi:10.1007/s00521-011-0595-5
    • Ranjith PG, Khandelwal M (2011) Artificial neural network for prediction of air flow in a single rock joint. Neural Comput Appl. doi: 10. 1007/s00521-011-0595-5.
    • (2011) Neural Comput Appl
    • Ranjith, P.G.1    Khandelwal, M.2
  • 31
    • 79955819312 scopus 로고    scopus 로고
    • An assessment of total RMR classification system using unified simulation model based on artificial neural networks
    • Mert E, Yilmaz S, Inal M (2011) An assessment of total RMR classification system using unified simulation model based on artificial neural networks. Neural Comput Appl 20: 603-610.
    • (2011) Neural Comput Appl , vol.20 , pp. 603-610
    • Mert, E.1    Yilmaz, S.2    Inal, M.3
  • 32
    • 70350376878 scopus 로고    scopus 로고
    • Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming
    • Çanakci{dotless} H, Baykasoǧlu A, Güllü H (2009) Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Comput Appl 18: 1031-1041.
    • (2009) Neural Comput Appl , vol.18 , pp. 1031-1041
    • Çanakci, H.1    Baykasoǧlu, A.2    Güllü, H.3
  • 33
    • 84861182940 scopus 로고    scopus 로고
    • An intelligent approach to evaluate drilling performance
    • doi:10.1007/s00521-010-0457-6
    • Bhatnagar A, Khandelwal M (2011) An intelligent approach to evaluate drilling performance. Neural Comput Appl. doi: 10. 1007/s00521-010-0457-6.
    • (2011) Neural Comput Appl
    • Bhatnagar, A.1    Khandelwal, M.2
  • 34
    • 84867705340 scopus 로고    scopus 로고
    • Evaluation of fly rock phenomenon due to blasting operation by support vector machine
    • doi:10.1007/s00521-011-0631-5
    • Amini H, Gholami R, Monjezi M, Torabi SR, Zadhesh J (2011) Evaluation of fly rock phenomenon due to blasting operation by support vector machine. Neural Comput Appl. doi: 10. 1007/s00521-011-0631-5.
    • (2011) Neural Comput Appl
    • Amini, H.1    Gholami, R.2    Monjezi, M.3    Torabi, S.R.4    Zadhesh, J.5
  • 35
    • 84885021301 scopus 로고    scopus 로고
    • Burden prediction in blasting operation using rock geomechanical properties
    • doi:10.1007/s12517-010-0269-0
    • Rezaei M, Monjezi M, Ghorbani Moghaddam S, Farzaneh F (2011) Burden prediction in blasting operation using rock geomechanical properties. Arab J Geosci. doi: 10. 1007/s12517-010-0269-0.
    • (2011) Arab J Geosci
    • Rezaei, M.1    Monjezi, M.2    Ghorbani Moghaddam, S.3    Farzaneh, F.4
  • 38
    • 79960033327 scopus 로고    scopus 로고
    • Application of soft computing to predict blast-induced ground vibration, Engineering with computers
    • Khandelwal M, Kumar DL, Mohan Y (2011) Application of soft computing to predict blast-induced ground vibration, Engineering with computers. Eng Comput 27: 117-125.
    • (2011) Eng Comput , vol.27 , pp. 117-125
    • Khandelwal, M.1    Kumar, D.L.2    Mohan, Y.3
  • 39
    • 3042680664 scopus 로고    scopus 로고
    • Use of back propagation neural network for landslide monitoring: a case study in the higher Himalaya
    • Neaupane KM, Achet SH (2004) Use of back propagation neural network for landslide monitoring: a case study in the higher Himalaya. Eng Geol 74: 213-226.
    • (2004) Eng Geol , vol.74 , pp. 213-226
    • Neaupane, K.M.1    Achet, S.H.2
  • 40
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and application
    • Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Method 43: 3-31.
    • (2000) J Microbiol Method , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 42
    • 33644521720 scopus 로고    scopus 로고
    • Prediction of blast induced ground vibrations and frequency in opencast mine-a neural network approach
    • Khandelwal M, Singh TN (2006) Prediction of blast induced ground vibrations and frequency in opencast mine-a neural network approach. J Sound Vibrat 289: 711-725.
    • (2006) J Sound Vibrat , vol.289 , pp. 711-725
    • Khandelwal, M.1    Singh, T.N.2
  • 44
    • 33744525118 scopus 로고    scopus 로고
    • Extending the Q system's prediction of support in tunnels employing fuzzy logic and extra parameters
    • Tzamos S, Sofianos AI (2006) Extending the Q system's prediction of support in tunnels employing fuzzy logic and extra parameters. Int J Rock Mech Min Sci 43: 938-949.
    • (2006) Int J Rock Mech Min Sci , vol.43 , pp. 938-949
    • Tzamos, S.1    Sofianos, A.I.2
  • 46
    • 3042784151 scopus 로고    scopus 로고
    • Influence of geological conditions on the powder factor for tunnel blasting
    • Jong YH, Lee CI (2004) Influence of geological conditions on the powder factor for tunnel blasting. Int J Rock Mech Min Sci 41(Supplement 1): 533-538.
    • (2004) Int J Rock Mech Min Sci , vol.41 , Issue.SUPPL. 1 , pp. 533-538
    • Jong, Y.H.1    Lee, C.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.