메뉴 건너뛰기




Volumn 41, Issue SUPPL. 1, 2004, Pages

Influence of geological conditions on the powder factor for tunnel blasting

Author keywords

Cosine amplitude method; Fractional factorial design; Neural network; Powder factor; Relative strength effect; Tunnel blasting

Indexed keywords

BLASTING; MATHEMATICAL MODELS; NEURAL NETWORKS; SENSITIVITY ANALYSIS; TUNNELS;

EID: 3042784151     PISSN: 13651609     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijrmms.2004.03.095     Document Type: Article
Times cited : (86)

References (14)
  • 2
    • 0028668966 scopus 로고
    • Effects of joint orientation and rock mass quality on tunnel blasting
    • Chakraborty, A.K., Jethwa, J.L. & Paithankar, A.G. 1994. Effects of joint orientation and rock mass quality on tunnel blasting. Eng Geol 37: pp. 247-262.
    • (1994) Eng Geol , vol.37 , pp. 247-262
    • Chakraborty, A.K.1    Jethwa, J.L.2    Paithankar, A.G.3
  • 3
    • 0031210760 scopus 로고    scopus 로고
    • Predicting powder factor in mixed-face condition: Development of a correlation based on investigations in a tunnel through basaltic flows
    • Chakraborty, A.K., Jethaw, J.L. & Dhar, B.B. 1997. Predicting powder factor in mixed-face condition: development of a correlation based on investigations in a tunnel through basaltic flows. Eng Geol 47: pp. 31-41.
    • (1997) Eng Geol , vol.47 , pp. 31-41
    • Chakraborty, A.K.1    Jethaw, J.L.2    Dhar, B.B.3
  • 5
    • 0038702533 scopus 로고    scopus 로고
    • A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering
    • Jing, L. 2003. A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering. Int J Rock Meck Min Sci 40(3): pp. 283-353.
    • (2003) Int J Rock Meck Min Sci , vol.40 , Issue.3 , pp. 283-353
    • Jing, L.1
  • 6
    • 0026469884 scopus 로고
    • Identifying probable failure modes for underground openings using a neural network
    • Lee, C. & Sterling, R. 1992. Identifying probable failure modes for underground openings using a neural network. Int J Rock Mech Min Sci 29(1): pp. 49-67.
    • (1992) Int J Rock Mech Min Sci , vol.29 , Issue.1 , pp. 49-67
    • Lee, C.1    Sterling, R.2
  • 8
    • 0034836751 scopus 로고    scopus 로고
    • Data mining for tunnel support stability: Neural network approach
    • Leu, S.S., Chen, C.N. & Chang, S.L. 2001. Data mining for tunnel support stability: neural network approach. Autom Constr 10(4): pp. 429-441.
    • (2001) Autom Constr , vol.10 , Issue.4 , pp. 429-441
    • Leu, S.S.1    Chen, C.N.2    Chang, S.L.3
  • 9
    • 0022903658 scopus 로고
    • An empirical method of assessing rock mass blastability
    • Newman
    • Lilly P. 1986. An empirical method of assessing rock mass blastability. Proc. of the Large Open Pit Mining Conf. Newman. pp. 89-92.
    • (1986) Proc. of the Large Open Pit Mining Conf. , pp. 89-92
    • Lilly, P.1
  • 14
    • 0032169593 scopus 로고    scopus 로고
    • The Application of Neural Networks to Rock Engineering System (RES)
    • Yang, Y. & Zhang, Q. 1998. The Application of Neural Networks to Rock Engineering System (RES). Int J Rock Mech Min Sci 35(6): pp.727-745.
    • (1998) Int J Rock Mech Min Sci , vol.35 , Issue.6 , pp. 727-745
    • Yang, Y.1    Zhang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.