메뉴 건너뛰기




Volumn 21, Issue 8, 2012, Pages 2077-2085

Evaluation of flyrock phenomenon due to blasting operation by support vector machine

Author keywords

Artificial neural network; Blasting; Flyrock; Soungun copper mine; Support vector machine

Indexed keywords

ARTIFICIAL INTELLIGENCE METHODS; BLASTING OPERATIONS; EMPIRICAL METHOD; FLYROCK; MACHINE LEARNING TECHNIQUES; OPEN PIT MINES;

EID: 84867705340     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0631-5     Document Type: Article
Times cited : (90)

References (43)
  • 1
    • 17844387840 scopus 로고    scopus 로고
    • An intelligent approach to prediction and control ground vibration in mines
    • Singh TN, Singh V (2005) An intelligent approach to prediction and control ground vibration in mines. Geotech Geol Eng 23: 249-262.
    • (2005) Geotech Geol Eng , vol.23 , pp. 249-262
    • Singh, T.N.1    Singh, V.2
  • 2
    • 70449528486 scopus 로고    scopus 로고
    • Prediction of backbreak in open pit blasting using fuzzy set theory
    • Monjezi M, Rezaei M, Yazdian A (2010) Prediction of backbreak in open pit blasting using fuzzy set theory. Expert Syst Appl 37: 2637-2643.
    • (2010) Expert Syst Appl , vol.37 , pp. 2637-2643
    • Monjezi, M.1    Rezaei, M.2    Yazdian, A.3
  • 5
    • 1342274989 scopus 로고    scopus 로고
    • Accident investigation report: surface coal mine, fatal explosives accident
    • MSHA,Big Creek Mining, Inc., Mine no. 2, KY
    • MSHA (1999) Accident investigation report: surface coal mine, fatal explosives accident. Appalachian Mining Services, Big Creek Mining, Inc., Mine no. 2, KY.
    • (1999) Appalachian Mining Services
  • 7
    • 4243366663 scopus 로고    scopus 로고
    • Institute of Makers of Explosives (IME), Washington, DC: Safety publication, No. 12
    • Institute of Makers of Explosives (IME) (1997) Glossary of commercial explosives industry terms. Safety publication, No. 12, Washington, DC, p 16.
    • (1997) Glossary of Commercial Explosives Industry Terms , pp. 16
  • 8
    • 84867707226 scopus 로고
    • The effect of stemming on the distance of throw of flyrock in connection with hole diameters
    • Report DS 1, Stockholm
    • Holmeberg R, Persson G (1976) The effect of stemming on the distance of throw of flyrock in connection with hole diameters. Swedish Detonic Research Foundation, Report DS 1, Stockholm.
    • (1976) Swedish Detonic Research Foundation
    • Holmeberg, R.1    Persson, G.2
  • 10
    • 0008937635 scopus 로고    scopus 로고
    • Avoiding tragedy: lessons to be learned from a flyrock fatality
    • Shea CW, Clark D (1998) Avoiding tragedy: lessons to be learned from a flyrock fatality. Coal Age 103(2): 51-54.
    • (1998) Coal Age , vol.103 , Issue.2 , pp. 51-54
    • Shea, C.W.1    Clark, D.2
  • 14
    • 1342323417 scopus 로고    scopus 로고
    • Blasting injuries in surface mines with emphasis on flyrock and blast area security
    • Bajpayee TS (2004) Blasting injuries in surface mines with emphasis on flyrock and blast area security. J Safety Res 35(1): 47-57.
    • (2004) J Safety Res , vol.35 , Issue.1 , pp. 47-57
    • Bajpayee, T.S.1
  • 15
    • 79551606408 scopus 로고    scopus 로고
    • Flyrock danger zone demarcation in opencast mines: a risk based approach
    • doi:0.1007/s10064-010-0298-7
    • Raina AK, Chakraborty AK, Choudhury PB, Sinha A (2011) Flyrock danger zone demarcation in opencast mines: a risk based approach. Bull Eng Geol Environ 70: 163-172. doi: 0. 1007/s10064-010-0298-7.
    • (2011) Bull Eng Geol Environ , vol.70 , pp. 163-172
    • Raina, A.K.1    Chakraborty, A.K.2    Choudhury, P.B.3    Sinha, A.4
  • 16
    • 34248151533 scopus 로고    scopus 로고
    • Prediction of surface crown pillar stability using artificial neural networks
    • Tawadrous AS, Katsabanis PD (2007) Prediction of surface crown pillar stability using artificial neural networks. Int J Numer Anal Methods Geomech 31(7): 917-931.
    • (2007) Int J Numer Anal Methods Geomech , vol.31 , Issue.7 , pp. 917-931
    • Tawadrous, A.S.1    Katsabanis, P.D.2
  • 17
    • 77649342232 scopus 로고    scopus 로고
    • Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks
    • Monjezi M, Bahrami A, YazdianVarjani A (2010) Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. Int J Rock Mech Min Sci 47: 476-480.
    • (2010) Int J Rock Mech Min Sci , vol.47 , pp. 476-480
    • Monjezi, M.1    Bahrami, A.2    YazdianVarjani, A.3
  • 18
    • 85027955140 scopus 로고    scopus 로고
    • Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach
    • doi: 10. 1007/s12517-010-0185-3
    • Monjezi M, Amini Khoshalan H, Yazdian Varjani A (2010) Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arab J Geosci, doi: 10. 1007/s12517-010-0185-3.
    • (2010) Arab J Geosci
    • Monjezi, M.1    Amini Khoshalan, H.2    Yazdian Varjani, A.3
  • 19
    • 78049426643 scopus 로고    scopus 로고
    • Development of a fuzzy model to predict flyrock in surface mining
    • Rezaei M, Monjezi M, Yazdian Varjani M (2001) Development of a fuzzy model to predict flyrock in surface mining. Safety Sci 49: 298-305.
    • (2001) Safety Sci , vol.49 , pp. 298-305
    • Rezaei, M.1    Monjezi, M.2    Yazdian Varjani, M.3
  • 26
    • 67649399014 scopus 로고    scopus 로고
    • SVM model for estimating the parameters of the probability integral method of predicting mining subsidence
    • Zhang H, Wang HJ, Li YF (2009) SVM model for estimating the parameters of the probability integral method of predicting mining subsidence. Min Sci Tech 19: 0385-0388.
    • (2009) Min Sci Tech , vol.19 , pp. 0385-0388
    • Zhang, H.1    Wang, H.J.2    Li, Y.F.3
  • 31
    • 84866678831 scopus 로고    scopus 로고
    • Flyrock control-by chance or design
    • New Orleans
    • Richards AB, Moore AJ (2002) Flyrock control-by chance or design. ISEE conference, New Orleans.
    • (2002) ISEE conference
    • Richards, A.B.1    Moore, A.J.2
  • 32
    • 17644437641 scopus 로고    scopus 로고
    • Advanced support vector machines and kernel methods
    • Sanchez DV (2003) Advanced support vector machines and kernel methods. Neurocomputing 55: 5-20.
    • (2003) Neurocomputing , vol.55 , pp. 5-20
    • Sanchez, D.V.1
  • 33
    • 17644423485 scopus 로고    scopus 로고
    • Efficient performance estimate for one-class support vector machine
    • Quang-Anh T, Xing L, Haixin D (2005) Efficient performance estimate for one-class support vector machine. Pattern Recogn Lett 26: 1174-1182.
    • (2005) Pattern Recogn Lett , vol.26 , pp. 1174-1182
    • Quang-Anh, T.1    Xing, L.2    Haixin, D.3
  • 34
    • 33751220230 scopus 로고    scopus 로고
    • Terminated ramp-support vector machines: a nonparametric data dependent kernel
    • Stefano M, Giuseppe J (2006) Terminated ramp-support vector machines: a nonparametric data dependent kernel. Neural Netw 19: 1597-1611.
    • (2006) Neural Netw , vol.19 , pp. 1597-1611
    • Stefano, M.1    Giuseppe, J.2
  • 35
    • 33750523404 scopus 로고    scopus 로고
    • Adaptive simplification of solution for support vector machine
    • Lia Q, Licheng J, Yingjuan H (2007) Adaptive simplification of solution for support vector machine. Pattern Recogn 40: 972-980.
    • (2007) Pattern Recogn , vol.40 , pp. 972-980
    • Lia, Q.1    Licheng, J.2    Yingjuan, H.3
  • 36
    • 40649103591 scopus 로고    scopus 로고
    • Kernel-based online machine learning and support vector reduction
    • Agarwala S, Vijaya Saradhib V, Karnick H (2008) Kernel-based online machine learning and support vector reduction. Neurocomputing 71: 1230-1237.
    • (2008) Neurocomputing , vol.71 , pp. 1230-1237
    • Agarwala, S.1    Vijaya Saradhib, V.2    Karnick, H.3
  • 37
    • 67649213554 scopus 로고    scopus 로고
    • Optimal reduction of solutions for support vector machines
    • Lin HJ, Yeh JP (2009) Optimal reduction of solutions for support vector machines. Appl Math Comp 214: 329-335.
    • (2009) Appl Math Comp , vol.214 , pp. 329-335
    • Lin, H.J.1    Yeh, J.P.2
  • 38
    • 57849101999 scopus 로고    scopus 로고
    • Using domain-specific knowledge in generalization error bounds for support vector machine learning
    • Eryarsoy E, Gary J, Aytug H (2009) Using domain-specific knowledge in generalization error bounds for support vector machine learning. Decis Support Syst 46: 481-491.
    • (2009) Decis Support Syst , vol.46 , pp. 481-491
    • Eryarsoy, E.1    Gary, J.2    Aytug, H.3
  • 39
    • 58349084263 scopus 로고    scopus 로고
    • A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
    • Wu ChH, Tzeng GH, Lin RH (2009) A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Exp Syst Appl 36: 4725-4735.
    • (2009) Exp Syst Appl , vol.36 , pp. 4725-4735
    • Wu, C.H.1    Tzeng, G.H.2    Lin, R.H.3
  • 41
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • Wang WJ, Xu ZB, Lu WZ, Zhang XY (2003) Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55: 643-663.
    • (2003) Neurocomputing , vol.55 , pp. 643-663
    • Wang, W.J.1    Xu, Z.B.2    Lu, W.Z.3    Zhang, X.Y.4
  • 42
    • 0035398081 scopus 로고    scopus 로고
    • Model Induction with support vector machines: introduction and application
    • Dibike YB, Velickov S, Solomatine D, Abbott MB (2001) Model Induction with support vector machines: introduction and application. J Comput Civil Eng 15(3): 208-216.
    • (2001) J Comput Civil Eng , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 43
    • 33746834358 scopus 로고    scopus 로고
    • Support vector machines identification for runoff modeling
    • Bray M, Han D (2004) Support vector machines identification for runoff modeling. J Hydroinformatics 6: 265-280.
    • (2004) J Hydroinformatics , vol.6 , pp. 265-280
    • Bray, M.1    Han, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.