메뉴 건너뛰기




Volumn 22, Issue , 2012, Pages 547-555

Subset infinite relational models

Author keywords

[No Author keywords available]

Indexed keywords

STOCHASTIC SYSTEMS;

EID: 84880710954     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (20)
  • 1
    • 0002617436 scopus 로고
    • Ferguson distributions via Polya urn schemes
    • D. Blackwell and J. B. MacQueen. Ferguson distributions via Polya urn schemes. The Annals of Statistics, 1 (2): 353-355, 1973.
    • (1973) The Annals of Statistics , vol.1 , Issue.2 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.B.2
  • 3
    • 62549125109 scopus 로고    scopus 로고
    • High-dimensional sparse factor modeling: Applications in gene expression genomics
    • C. M. Carvalho, J. Chang, J. E. Lucas, J. R. Nevins, Q. Wang, and M. West. High-dimensional sparse factor modeling: Applications in gene expression genomics. J. Am. Stat. Assoc., 103 (484): 1438-1456, 2008.
    • (2008) J. Am. Stat. Assoc. , vol.103 , Issue.484 , pp. 1438-1456
    • Carvalho, C.M.1    Chang, J.2    Lucas, J.E.3    Nevins, J.R.4    Wang, Q.5    West, M.6
  • 4
    • 43049151837 scopus 로고    scopus 로고
    • Hierarchical structure and the prediction of missing links in networks
    • A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks. Nature, 453: 98-101, 2008.
    • (2008) Nature , vol.453 , pp. 98-101
    • Clauset, A.1    Moore, C.2    Newman, M.E.J.3
  • 5
    • 1842637512 scopus 로고    scopus 로고
    • Mixed-membership models of scientific publications
    • E. Erosheva, S. Fienberg, and J. Lafferty. Mixed- membership models of scientific publications. PNAS, 101 (Suppl 1): 5220-5227, 2004.
    • (2004) PNAS , vol.101 , pp. 5220-5227
    • Erosheva, E.1    Fienberg, S.2    Lafferty, J.3
  • 6
    • 71149093889 scopus 로고    scopus 로고
    • Dynamic mixed member- ship blockmodel for evolving networks
    • W. Fu, L. Song, and E. P. Xing. Dynamic mixed member- ship blockmodel for evolving networks. In Proc. ICML, 2009.
    • (2009) Proc. ICML
    • Fu, W.1    Song, L.2    Xing, E.P.3
  • 8
    • 80053445974 scopus 로고    scopus 로고
    • A unified probabilistic model for global and local unsupervised feature selection
    • Y. Guan, J. Dy, and M. Jordan. A unified probabilistic model for global and local unsupervised feature selec- tion. In Proc. ICML, 2011.
    • (2011) Proc. ICML
    • Guan, Y.1    Dy, J.2    Jordan, M.3
  • 9
    • 33644863012 scopus 로고    scopus 로고
    • Subset clustering of binary sequences, with an application to genomic abnormality data
    • P. D. Hoff. Subset clustering of binary sequences, with an application to genomic abnormality data. Biometrics, 61 (4): 1027-1036, 2005.
    • (2005) Biometrics , vol.61 , Issue.4 , pp. 1027-1036
    • Hoff, P.D.1
  • 10
    • 33645992615 scopus 로고    scopus 로고
    • Model-based subspace clustering
    • P. D. Hoff. Model-based subspace clustering. Bayesian Analysis, 1 (2): 321-344, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.2 , pp. 321-344
    • Hoff, P.D.1
  • 11
    • 85161983942 scopus 로고    scopus 로고
    • Dynamic infinite relational model for time-varying relational data analysis
    • K. Ishiguro, T. Iwata, N. Ueda, and J. Tenenbaum. Dy- namic infinite relational model for time-varying rela- tional data analysis. In Proc. NIPS, 2010.
    • (2010) Proc. NIPS
    • Ishiguro, K.1    Iwata, T.2    Ueda, N.3    Tenenbaum, J.4
  • 13
    • 27644595770 scopus 로고    scopus 로고
    • The enron corpus: A new dataset for email classification research
    • B. Klimat and Y. Yang. The enron corpus: A new dataset for email classification research. In Proc. ECML, 2004.
    • (2004) Proc. ECML
    • Klimat, B.1    Yang, Y.2
  • 15
    • 79951739147 scopus 로고    scopus 로고
    • Nonparametric latent feature models for link prediction
    • K. T. Miller, T. L. Griffiths, and M. I. Jordan. Nonpara- metric latent feature models for link prediction. In Proc. NIPS, 2009.
    • (2009) Proc. NIPS
    • Miller, K.T.1    Griffiths, T.L.2    Jordan, M.I.3
  • 16
    • 0442296603 scopus 로고    scopus 로고
    • Estimation and predic- tion for stochastic blockstructures
    • K. Nowicki and T. A. B. Snijders. Estimation and predic- tion for stochastic blockstructures. J. Am. Stat. Assoc., 96 (455): 1077-1087, 2001.
    • (2001) J. Am. Stat. Assoc. , vol.96 , Issue.455 , pp. 1077-1087
    • Nowicki, K.1    Snijders, T.A.B.2
  • 17
    • 0000720609 scopus 로고
    • A constructive definition of dirichlet process
    • J. Sethuraman. A constructive definition of dirichlet pro- cess. Statistica Sinica, 4: 639-650, 1994.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 18
    • 85161974806 scopus 로고    scopus 로고
    • Modelling relational data using Bayesian clustered tensor factorization
    • I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. Mod- elling relational data using Bayesian clustered tensor fac- torization. In Proc. NIPS, 2010.
    • (2010) Proc. NIPS
    • Sutskever, I.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 19
    • 65449147147 scopus 로고    scopus 로고
    • Community evolution in dynamic multi-mode networks
    • L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in dynamic multi-mode networks. In Proc. SIGKDD, pages 677-685, 2008.
    • (2008) Proc. SIGKDD , pp. 677-685
    • Tang, L.1    Liu, H.2    Zhang, J.3    Nazeri, Z.4
  • 20
    • 83855162681 scopus 로고    scopus 로고
    • Stochastic relational models for large-scale dyadic data using mcmc
    • S. Zhu, K. Yu, and Y. Gong. Stochastic relational models for large-scale dyadic data using mcmc. In Proc. NIPS, 2009.
    • (2009) Proc. NIPS
    • Zhu, S.1    Yu, K.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.