메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 479-483

A framework for clustering massive text and categorical data streams

Author keywords

Categorical data; Clustering; Streams; Text

Indexed keywords

COMPUTER APPLICATIONS; COMPUTER SIMULATION; DATA RECORDING; IMAGE SEGMENTATION; INFORMATION RETRIEVAL SYSTEMS; PROBLEM SOLVING; REAL TIME SYSTEMS; STATISTICAL METHODS;

EID: 33745442151     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972764.44     Document Type: Conference Paper
Times cited : (77)

References (4)
  • 1
    • 1142291588 scopus 로고    scopus 로고
    • A framework for diagnosing changes in evolving data streams
    • C. C. Aggarwal, A Framework for Diagnosing Changes in Evolving Data Streams, ACM SIGMOD Conference, (2003), pp. 575-586.
    • (2003) ACM SIGMOD Conference , pp. 575-586
    • Aggarwal, C.C.1
  • 2
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. Yu, A Framework for Clustering Evolving Data Streams, VLDB Conference, (2003), pp. 81-92.
    • (2003) VLDB Conference , pp. 81-92
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.4
  • 4
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: An Efficient Data Clustering Method for Very Large Databases, ACM SIGMOD Conference, (1996), pp. 103-114.
    • (1996) ACM SIGMOD Conference , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.