메뉴 건너뛰기




Volumn 5, Issue 1, 2006, Pages 13-20

Rule preference effect in associative classification mining

Author keywords

Associative classification; classification; data mining; rule pruning; rule ranking

Indexed keywords


EID: 84880199777     PISSN: 02196492     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219649206001281     Document Type: Article
Times cited : (9)

References (17)
  • 3
    • 51349151924 scopus 로고    scopus 로고
    • A lazy approach to pruning classification rules
    • Baralis, E and P Torino (2000). A lazy approach to pruning classification rules. In Proceedings of the ICDM'02, p. 35.
    • (2000) Proceedings of the ICDM'02 , pp. 35
    • Baralis, E.1    Torino, P.2
  • 7
    • 78149313084 scopus 로고    scopus 로고
    • CMAR: Accurate and efficient classification based on multiple-class association rule
    • San Jose, CA
    • Li, W, J Han and J Pei (2001). CMAR: Accurate and efficient classification based on multiple-class association rule. In Proceedings of the ICDM'01, pp. 369-376. San Jose, CA.
    • (2001) Proceedings of the ICDM'01 , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 8
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms
    • Lim, T, W Loh and Y Shih (2000). A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms. Machine Learning, 40(3), 203-228.
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.1    Loh, W.2    Shih, Y.3
  • 9
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • New York, NY
    • Liu, B, W Hsu and Y Ma (1998). Integrating classification and association rule mining. In Proceedings of the KDD, pp. 80-86. New York, NY.
    • (1998) Proceedings of the KDD , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 10
    • 0000942050 scopus 로고
    • A theory and methodology of inductive learning
    • Michaliski, R (1983). A theory and methodology of inductive learning. Artificial Intelligence, 20, 111-161.
    • (1983) Artificial Intelligence , vol.20 , pp. 111-161
    • Michaliski, R.1
  • 13
  • 17
    • 11344262990 scopus 로고    scopus 로고
    • CPAR: Classification based on predictive association rule
    • San Francisco, CA
    • Yin, X and J Han (2003). CPAR: Classification based on predictive association rule. In Proceedings of the SDM pp. 369-376. San Francisco, CA.
    • (2003) Proceedings of the SDM , pp. 369-376
    • Yin, X.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.