메뉴 건너뛰기




Volumn 6, Issue 2, 2013, Pages 243-259

The bayesian covariance lasso

Author keywords

Bayesian covariance lasso; Network exploration; Nonfull rank data; Penalized likelihood; Precision matrix

Indexed keywords


EID: 84880141876     PISSN: 19387989     EISSN: 19387997     Source Type: Journal    
DOI: 10.4310/sii.2013.v6.n2.a8     Document Type: Article
Times cited : (46)

References (31)
  • 2
    • 0034557223 scopus 로고    scopus 로고
    • Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
    • MR1804544
    • Barnard, J., McCulloch, R., and Meng, X. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica 10 1281- 1311. MR1804544
    • (2000) Statistica Sinica , vol.10 , pp. 1281-1311
    • Barnard, J.1    McCulloch, R.2    Meng, X.3
  • 3
    • 69249182056 scopus 로고    scopus 로고
    • Objective Bayesian model selection in Gaussian graphical models
    • MR2538753
    • Carvalho, C. M. and Scott, J. G. (2009). Objective Bayesian model selection in Gaussian graphical models. Biometrika 96 497- 512. MR2538753
    • (2009) Biometrika , vol.96 , pp. 497-512
    • Carvalho, C.M.1    Scott, J.G.2
  • 4
    • 0347994096 scopus 로고    scopus 로고
    • Random effects selection in linear mixed models
    • MR2025100
    • Chen, Z. and Dunson, D. (2003). Random effects selection in linear mixed models. Biometrics 59 762-769. MR2025100
    • (2003) Biometrics , vol.59 , pp. 762-769
    • Chen, Z.1    Dunson, D.2
  • 6
    • 0001038826 scopus 로고
    • Covariance selection
    • Dempster, A. P. (1972). Covariance selection. Biometrics 28 157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.P.1
  • 8
    • 15944403709 scopus 로고    scopus 로고
    • Model selection for Gaussian concentration graphs
    • MR2090624
    • Drton, M. and Perlman, M. (2004). Model selection for Gaussian concentration graphs. Biometrika 91 591-602. MR2090624
    • (2004) Biometrika , vol.91 , pp. 591-602
    • Drton, M.1    Perlman, M.2
  • 9
    • 0004221188 scopus 로고    scopus 로고
    • Introduction to Graphical Modeling
    • Springer, New York. MR1880319
    • Edwards, D. M. (2000). Introduction to Graphical Modeling. Springer, New York. MR1880319
    • (2000)
    • Edwards, D.M.1
  • 10
    • 0000256876 scopus 로고
    • Le traitement des variables vectorielles
    • MR0334416
    • Escoufer, Y. (1973). Le traitement des variables vectorielles. Biometrics 29 751-760. MR0334416
    • (1973) Biometrics , vol.29 , pp. 751-760
    • Escoufer, Y.1
  • 11
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive LASSO and SCAD penalties
    • MR2750671
    • Fan, J., Feng, Y., and Wu, Y. (2009). Network exploration via the adaptive LASSO and SCAD penalties. Annals of Applied Statistics 3 521-541. MR2750671
    • (2009) Annals of Applied Statistics , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 12
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 37249017545 scopus 로고    scopus 로고
    • Bayesian parsimonious covariance estimation for hierarchical linear mixed models
    • MR2416434
    • Frühwirth-Schnatter, S. and Tüchler, R. (2008). Bayesian parsimonious covariance estimation for hierarchical linear mixed models. Stat Comput 18 1-13. MR2416434
    • (2008) Stat Comput , vol.18 , pp. 1-13
    • Frühwirth-Schnatter, S.1    Tüchler, R.2
  • 14
    • 66149153861 scopus 로고    scopus 로고
    • Evidence on the emergence of the brain default network from 2-week-old to 2-year-old healthy pediatric subjects
    • Gao, W., Zhu, H., Giovanellom, K., Smith, J., Shen, D., Gilmoref, J., and Lin, W. (2009). Evidence on the emergence of the brain default network from 2-week-old to 2-year-old healthy pediatric subjects. PNAS 106 6790-6795.
    • (2009) PNAS , vol.106 , pp. 6790-6795
    • Gao, W.1    Zhu, H.2    Giovanellom, K.3    Smith, J.4    Shen, D.5    Gilmoref, J.6    Lin, W.7
  • 15
    • 0011572986 scopus 로고
    • Minimax estimators for a multinormal precision matrix
    • MR0451480
    • Haff, L. R. (1977). Minimax estimators for a multinormal precision matrix, Journal of Multivariate Analysis 7 374-385. MR0451480
    • (1977) Journal of Multivariate Analysis , vol.7 , pp. 374-385
    • Haff, L.R.1
  • 16
    • 33644986127 scopus 로고    scopus 로고
    • Covariance matrix selection and estimation via penalized normal likelihood
    • MR2277742
    • Huang, J., Liu, N., Pourahmdi, M., and Liu, L. (2006). Covariance matrix selection and estimation via penalized normal likelihood. Biometrika 93 85-98. MR2277742
    • (2006) Biometrika , vol.93 , pp. 85-98
    • Huang, J.1    Liu, N.2    Pourahmdi, M.3    Liu, L.4
  • 17
    • 0442309554 scopus 로고    scopus 로고
    • The multiple-try method and local optimization in metropolis sampling
    • MR1803145
    • Liu, J. S., Liang, F., and Wong, W.H. (2000). The multiple-try method and local optimization in metropolis sampling. Journal of the American Statistical Association 95 121-134. MR1803145
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 121-134
    • Liu, J.S.1    Liang, F.2    Wong, W.H.3
  • 19
    • 0001304198 scopus 로고    scopus 로고
    • Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix
    • MR1782488
    • Pourahmadi, M. (2008). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika 87 425-435. MR1782488
    • (2008) Biometrika , vol.87 , pp. 425-435
    • Pourahmadi, M.1
  • 20
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • MR2399865
    • Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica 17 1617- 1642. MR2399865
    • (2007) Statistica Sinica , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 21
    • 62349133125 scopus 로고    scopus 로고
    • Flexible covariance estimation in Gaussian graphical models
    • MR2485014
    • Rajaratnam, M. and Carvalho (2008). Flexible covariance estimation in Gaussian graphical models. Annals of Statistics 36 2818-2849. MR2485014
    • (2008) Annals of Statistics , vol.36 , pp. 2818-2849
    • Rajaratnam, M.1    Carvalho2
  • 23
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. and Nolan, G. (2003). Causal protein-signaling networks derived from multiparameter single cell data. Science 308 523-529.
    • (2003) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.4    Nolan, G.5
  • 24
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Schäfer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Genetics and Molecular Biology 4 32.
    • (2005) Genetics and Molecular Biology , vol.4 , pp. 32
    • Schäfer, J.1    Strimmer, K.2
  • 25
    • 0001100568 scopus 로고
    • On the characteristic roots of a linear substitution with an application to the theory of integral equations
    • MR1511512
    • Schur, I. (1909). On the characteristic roots of a linear substitution with an application to the theory of integral equations. Mathematische Annalen 66 488-510. MR1511512
    • (1909) Mathematische Annalen , vol.66 , pp. 488-510
    • Schur, I.1
  • 26
  • 27
    • 0036970576 scopus 로고    scopus 로고
    • Bayesian parsimonious covariance matrix estimation for longitudinal data
    • MR1951266
    • Smith, M. and Kohn, R. (2002). Bayesian parsimonious covariance matrix estimation for longitudinal data. J. Am. Statist. Assoc 87 1141-1153. MR1951266
    • (2002) J. Am. Statist. Assoc , vol.87 , pp. 1141-1153
    • Smith, M.1    Kohn, R.2
  • 28
    • 3843149220 scopus 로고    scopus 로고
    • Efficient estimation of covariance selection models
    • MR2024759
    • Wong, F., Carter, C. K., and Kohn, R. (2003). Efficient estimation of covariance selection models. Biometrika 90 809-830. MR2024759
    • (2003) Biometrika , vol.90 , pp. 809-830
    • Wong, F.1    Carter, C.K.2    Kohn, R.3
  • 29
    • 21844496542 scopus 로고
    • Estimation of covariance matrix using the reference prior
    • MR1311972
    • Yang, R. and Berger, I. O. (1994). Estimation of covariance matrix using the reference prior. The Annals of Statistics 22(3) 1195-1211. MR1311972
    • (1994) The Annals of Statistics , vol.22 , Issue.3 , pp. 1195-1211
    • Yang, R.1    Berger, I.O.2
  • 30
    • 64249118378 scopus 로고    scopus 로고
    • Efficient computation of l1 regularized estimates in Gaussian graphical models
    • MR2649068
    • Yuan, M. (2007). Efficient computation of l1 regularized estimates in Gaussian graphical models. Journal of Computational & Graphical Statistics 17 809-826. MR2649068
    • (2007) Journal of Computational & Graphical Statistics , vol.17 , pp. 809-826
    • Yuan, M.1
  • 31
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • MR2367824
    • Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94 19-35. MR2367824
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.