메뉴 건너뛰기




Volumn 61, Issue 3, 2013, Pages 762-776

Optimal budget allocation for sample average approximation

Author keywords

Optimal budget allocation; Sample average approximation; Stochastic programming

Indexed keywords

ALLOCATION POLICIES; BUDGET ALLOCATION; CONVERGENCE RATES; OPTIMAL SOLUTIONS; OPTIMIZATION ALGORITHMS; OPTIMIZATION ERRORS; SAMPLE AVERAGE APPROXIMATION; SUPERLINEAR CONVERGENCE;

EID: 84880081672     PISSN: 0030364X     EISSN: 15265463     Source Type: Journal    
DOI: 10.1287/opre.2013.1163     Document Type: Article
Times cited : (35)

References (34)
  • 1
    • 32944464073 scopus 로고    scopus 로고
    • Minimizing CVaR and VaR for a portfolio of derivatives
    • DOI 10.1016/j.jbankfin.2005.04.012, PII S0378426605000841, Risk Management and Optimization in Finance
    • Alexander S, Coleman TF, Li Y (2006) Minimizing CVaR and VaR for a portfolio of derivatives. J. Banking Finance 30:583-605. (Pubitemid 43257151)
    • (2006) Journal of Banking and Finance , vol.30 , Issue.2 , pp. 583-605
    • Alexander, S.1    Coleman, T.F.2    Li, Y.3
  • 4
    • 29444437829 scopus 로고    scopus 로고
    • An adaptive Monte Carlo algorithm for computing mixed logit estimators
    • DOI 10.1007/s10287-005-0044-y
    • Bastin F, Cirillo C, Toint PL (2006) An adaptive Monte Carlo algorithm for computing mixed logit estimators. Comput. Management Sci. 3(1):55-79. (Pubitemid 43008758)
    • (2006) Computational Management Science , vol.3 , Issue.1 , pp. 55-79
    • Bastin, F.1    Cirillo, C.2    Toint, P.L.3
  • 5
    • 77957713078 scopus 로고    scopus 로고
    • Assessing solution quality in stochastic programs via sampling
    • INFORMS, Hanover, MD
    • Bayraksan G, Morton DP (2009) Assessing solution quality in stochastic programs via sampling. Tutorials in Operations Research (INFORMS, Hanover, MD), 102-122.
    • (2009) Tutorials in Operations Research , pp. 102-122
    • Bayraksan, G.1    Morton, D.P.2
  • 6
    • 80053262880 scopus 로고    scopus 로고
    • A sequential sampling procedure for stochastic programming
    • Bayraksan G, Morton DP (2011) A sequential sampling procedure for stochastic programming. Oper. Res. 59:898-913.
    • (2011) Oper. Res. , vol.59 , pp. 898-913
    • Bayraksan, G.1    Morton, D.P.2
  • 9
    • 61349118110 scopus 로고    scopus 로고
    • Efficient simulation budget allocation for selecting an optimal subset
    • Chen CH, He D, Fu M, Lee LH (2008b) Efficient simulation budget allocation for selecting an optimal subset. INFORMS J. Comput. 20(4):579-595.
    • (2008) INFORMS J. Comput. , vol.20 , Issue.4 , pp. 579-595
    • Chen, C.H.1    He, D.2    Fu, M.3    Lee, L.H.4
  • 11
    • 0001421130 scopus 로고
    • Asympotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems
    • Dupacova J, Wets RJ-B (1988) Asympotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Statist. 16(4):1517-1549.
    • (1988) Ann. Statist. , vol.16 , Issue.4 , pp. 1517-1549
    • Dupacova, J.1    Wets, R.J.-B.2
  • 12
    • 0002783313 scopus 로고
    • Stochastic quasigradient methods
    • Ermoliev Y, Wets RJ-B, eds. (Springer, New York)
    • Ermoliev Y (1988) Stochastic quasigradient methods. Ermoliev Y, Wets RJ-B, eds. Numerical Techniques for Stochastic Optimization (Springer, New York), 141-186.
    • (1988) Numerical Techniques for Stochastic Optimization , pp. 141-186
    • Ermoliev, Y.1
  • 13
    • 51349098876 scopus 로고    scopus 로고
    • CVX: Matlab software for disciplined convex programming
    • version 1.21., Stanford University, Stanford, CA
    • Grant M, Boyd S (2010) CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx Technical report, Department of Electrical Engineering, Stanford University, Stanford, CA.
    • (2010) Technical Report, Department of Electrical Engineering
    • Grant, M.1    Boyd, S.2
  • 14
    • 76849090697 scopus 로고    scopus 로고
    • Simulation optimization using the cross-entropy method with optimal computing budget allocation
    • He D, Lee LH, Chen C-H, Fu MC, Wasserkrug S (2010) Simulation optimization using the cross-entropy method with optimal computing budget allocation. ACM Trans. Modeling Comput. Simulation 20(1):133-161.
    • (2010) ACM Trans. Modeling Comput. Simulation , vol.20 , Issue.1 , pp. 133-161
    • He, D.1    Lee, L.H.2    Chen, C.-H.3    Fu, M.C.4    Wasserkrug, S.5
  • 21
    • 0346152767 scopus 로고    scopus 로고
    • Computing the distribution function of a conditional expectation via Monte Carlo: Discrete conditioning spaces
    • Lee S-H, Glynn PW (2003) Computing the distribution function of a conditional expectation via Monte Carlo: Discrete conditioning spaces. ACM Trans. Modeling Comput. Simulation 13(3):238-258.
    • (2003) ACM Trans. Modeling Comput. Simulation , vol.13 , Issue.3 , pp. 238-258
    • Lee, S.-H.1    Glynn, P.W.2
  • 22
    • 33644697284 scopus 로고    scopus 로고
    • The empirical behavior of sampling methods for stochastic programming
    • DOI 10.1007/s10479-006-6169-8
    • Linderoth J, Shapiro A, Wright S (2006) The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142:215-241. (Pubitemid 43334036)
    • (2006) Annals of Operations Research , vol.142 , Issue.1 , pp. 215-241
    • Linderoth, J.1    Shapiro, A.2    Wright, S.3
  • 23
    • 0032632474 scopus 로고    scopus 로고
    • Monte Carlo bounding techniques for determining solution quality in stochastic programs
    • Mak WK, Morton DP, Wood RK (1999) Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24:47-56.
    • (1999) Oper. Res. Lett. , vol.24 , pp. 47-56
    • Mak, W.K.1    Morton, D.P.2    Wood, R.K.3
  • 24
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • Nemirovski A, Juditsky A, Lan G, Shapiro A (2009) Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4):1574-1609.
    • (2009) SIAM J. Optim. , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 27
    • 77955862417 scopus 로고    scopus 로고
    • On choosing parameters in retrospectiveapproximation algorithms for stochastic root finding and simulation optimization
    • Pasupathy R (2010) On choosing parameters in retrospectiveapproximation algorithms for stochastic root finding and simulation optimization. Oper. Res. 58(4):889-901.
    • (2010) Oper. Res , vol.58 , Issue.4 , pp. 889-901
    • Pasupathy, R.1
  • 28
    • 43649092507 scopus 로고    scopus 로고
    • Efficient sample sizes in stochastic nonlinear programming
    • DOI 10.1016/j.cam.2007.02.014, PII S037704270700091X
    • Polak E, Royset JO (2008) Efficient sample sizes in stochastic nonlinear programming. J. Comput. Appl. Math. 217:301-310. (Pubitemid 351685750)
    • (2008) Journal of Computational and Applied Mathematics , vol.217 , Issue.2 , pp. 301-310
    • Polak, E.1    Royset, J.O.2
  • 29
    • 77649189597 scopus 로고    scopus 로고
    • On buffered failure probability in design and optimization of structures
    • Rockafellar RT, Royset JO (2010) On buffered failure probability in design and optimization of structures. Reliability Engrg. System Safety 95:499-510.
    • (2010) Reliability Engrg. System Safety , vol.95 , pp. 499-510
    • Rockafellar, R.T.1    Royset, J.O.2
  • 30
    • 0036076694 scopus 로고    scopus 로고
    • Conditional value-at-risk for general loss distributions
    • Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J. Banking Finance 26:1443-1471.
    • (2002) J. Banking Finance , vol.26 , pp. 1443-1471
    • Rockafellar, R.T.1    Uryasev, S.2
  • 31
    • 84866258660 scopus 로고    scopus 로고
    • Optimality functions in stochastic programming
    • Royset JO (2012) Optimality functions in stochastic programming. Math. Programming 135(1):293-321.
    • (2012) Math. Programming , vol.135 , Issue.1 , pp. 293-321
    • Royset, J.O.1
  • 33
    • 0037322974 scopus 로고    scopus 로고
    • The sample average approximation method applied to stochastic routing problems: A computational study
    • Verweij B, Ahmed S, Kleywegt AJ, Nemhauser G, Shapiro A (2003) The sample average approximation method applied to stochastic routing problems: A computational study. Comput. Optim. Appl. 24:289-333.
    • (2003) Comput. Optim. Appl. , vol.24 , pp. 289-333
    • Verweij, B.1    Ahmed, S.2    Kleywegt, A.J.3    Nemhauser, G.4    Shapiro, A.5
  • 34
    • 62249126320 scopus 로고    scopus 로고
    • Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications
    • Xu H, Zhang D (2009) Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications. Math. Programming 119:371-401.
    • (2009) Math. Programming , vol.119 , pp. 371-401
    • Xu, H.1    Zhang, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.