메뉴 건너뛰기




Volumn 59, Issue 4, 2011, Pages 898-913

A sequential sampling procedure for stochastic programming

Author keywords

Programming: stochastic; Simulation: efficiency; Statistics: sampling

Indexed keywords

CANDIDATE SOLUTION; FEASIBLE SOLUTION; LIMIT POINTS; OPTIMALITY; POINT ESTIMATE; SAMPLE SIZES; SAMPLING PROBLEMS; SEQUENTIAL SAMPLING; SIMULATION: EFFICIENCY; TERMINATION CRITERIA;

EID: 80053262880     PISSN: 0030364X     EISSN: 15265463     Source Type: Journal    
DOI: 10.1287/opre.1110.0926     Document Type: Article
Times cited : (72)

References (47)
  • 1
    • 77950493192 scopus 로고    scopus 로고
    • An overview of simulation optimization via random search
    • S. G. Henderson, B. L. Nelson, eds, Elsevier, Amsterdam
    • Andradóttir, S. 2006. An overview of simulation optimization via random search. S. G. Henderson, B. L. Nelson, eds. Simulation. Handbooks in Operations Research and Management Science, Vol. 13. Elsevier, Amsterdam, 617-631.
    • (2006) Simulation. Handbooks in Operations Research and Management Science , vol.13 , pp. 617-631
    • Andradóttir, S.1
  • 2
    • 0000542426 scopus 로고
    • Approximation and convergence in nonlinear optimization
    • O. Mangasarian, R. Meyer, S. Robinson, eds, Academic Press, New York
    • Attouch, H., R. J.-B. Wets. 1981. Approximation and convergence in nonlinear optimization. O. Mangasarian, R. Meyer, S. Robinson, eds. Nonlinear Programming 4. Academic Press, New York, 367-394.
    • (1981) Nonlinear Programming , vol.4 , pp. 367-394
    • Attouch, H.1    Wets, R.J.-B.2
  • 3
    • 33745712333 scopus 로고    scopus 로고
    • Convergence theory for nonconvex stochastic programming with an application to mixed logit
    • DOI 10.1007/s10107-006-0708-6
    • Bastin, F., C. Cirillo, P. L. Toint. 2006. Convergence theory for nonconvex stochastic programming with an application to mixed logit. Math. Programming 108 (2-3) 207-234. (Pubitemid 43999758)
    • (2006) Mathematical Programming , vol.108 , Issue.2-3 , pp. 207-234
    • Bastin, F.1    Cirillo, C.2    Toint, P.L.3
  • 4
    • 33745712295 scopus 로고    scopus 로고
    • Assessing solution quality in stochastic programs
    • DOI 10.1007/s10107-006-0720-x
    • Bayraksan, G., D. P. Morton. 2006. Assessing solution quality in stochastic programs. Math. Programming 108 (2-3) 495-514. (Pubitemid 43999770)
    • (2006) Mathematical Programming , vol.108 , Issue.2-3 , pp. 495-514
    • Bayraksan, G.1    Morton, D.P.2
  • 5
    • 49749135750 scopus 로고    scopus 로고
    • Sequential sampling for solving stochastic programs
    • S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, R. R. Barton, eds, IEEE, Piscataway, NJ
    • Bayraksan, G., D. P. Morton. 2007. Sequential sampling for solving stochastic programs. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, R. R. Barton, eds. Proc. 2006 Winter Simulation Conf., IEEE, Piscataway, NJ, 421-429.
    • (2007) Proc. 2006 Winter Simulation Conf. , pp. 421-429
    • Bayraksan, G.1    Morton, D.P.2
  • 6
    • 0001336620 scopus 로고
    • On the asymptotic theory of fixed-width sequential confidence intervals for the mean
    • Chow, Y. S., H. Robbins. 1965. On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist. 36 457-462.
    • (1965) Ann. Math. Statist. , vol.36 , pp. 457-462
    • Chow, Y.S.1    Robbins, H.2
  • 7
    • 0001803205 scopus 로고
    • Parallel processors for planning under uncertainty
    • Dantzig, G. B., P. W. Glynn. 1990. Parallel processors for planning under uncertainty. Ann. Oper. Res. 22 1-21.
    • (1990) Ann. Oper. Res. , vol.22 , pp. 1-21
    • Dantzig, G.B.1    Glynn, P.W.2
  • 8
    • 0040389866 scopus 로고
    • A probabilistic lower bound for twostage stochastic programs
    • Department of Operations Research, Stanford University, Stanford, CA
    • Dantzig, G. B., G. Infanger. 1995. A probabilistic lower bound for twostage stochastic programs. Technical Report SOL 95-6, Department of Operations Research, Stanford University, Stanford, CA.
    • (1995) Technical Report SOL 95-6
    • Dantzig, G.B.1    Infanger, G.2
  • 9
    • 0001421130 scopus 로고
    • Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems
    • Dupačová, J., R. J.-B. Wets. 1988. Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Statist. 16 (4) 1517-1549.
    • (1988) Ann. Statist. , vol.16 , Issue.4 , pp. 1517-1549
    • Dupačová, J.1    Wets, R.J.-B.2
  • 10
    • 48349088484 scopus 로고    scopus 로고
    • Stochastic optimization via grid search
    • G. G. Yin, Q. Zhang, eds, Lectures in Applied Mathematics, American Mathematical Society, Providence, RI
    • Ensor, K. B., P. W. Glynn. 1997. Stochastic optimization via grid search. G. G. Yin, Q. Zhang, eds. Mathematics of Stochastic Manufacturing Systems. Lectures in Applied Mathematics, Vol. 33. American Mathematical Society, Providence, RI.
    • (1997) Mathematics of Stochastic Manufacturing Systems , vol.33
    • Ensor, K.B.1    Glynn, P.W.2
  • 11
    • 0002783313 scopus 로고
    • Stochastic quasigradient methods
    • Y. Ermoliev, R. J.-B. Wets, eds, Springer-Verlag, Berlin
    • Ermoliev, Y. 1988. Stochastic quasigradient methods. Y. Ermoliev, R. J.-B. Wets, eds. Numerical Techniques for Stochastic Optimization. Springer-Verlag, Berlin, 141-185.
    • (1988) Numerical Techniques for Stochastic Optimization , pp. 141-185
    • Ermoliev, Y.1
  • 12
    • 0002879508 scopus 로고
    • The allocation of aircraft to routes: An example of linear programming under uncertain demand
    • Ferguson, A. R., G. B. Dantzig. 1956. The allocation of aircraft to routes: An example of linear programming under uncertain demand. Management Sci. 3 (1) 45-73.
    • (1956) Management Sci. , vol.3 , Issue.1 , pp. 45-73
    • Ferguson, A.R.1    Dantzig, G.B.2
  • 15
    • 0343327401 scopus 로고
    • The asymptotic validity of sequential stopping rules for stochastic simulations
    • Glynn, P. W., W. Whitt. 1992. The asymptotic validity of sequential stopping rules for stochastic simulations. Ann. Appl. Probab. 2 (1) 180-198.
    • (1992) Ann. Appl. Probab. , vol.2 , Issue.1 , pp. 180-198
    • Glynn, P.W.1    Whitt, W.2
  • 17
    • 0011044859 scopus 로고
    • Statistical verification of optimality conditions for stochastic programs with recourse
    • Higle, J., S. Sen. 1991. Statistical verification of optimality conditions for stochastic programs with recourse. Ann. Oper. Res. 30 215-240.
    • (1991) Ann. Oper. Res. , vol.30 , pp. 215-240
    • Higle, J.1    Sen, S.2
  • 18
    • 0042762178 scopus 로고    scopus 로고
    • Duality and statistical tests of optimality for two stage stochastic programs
    • PII S0025561096000159
    • Higle, J., S. Sen. 1996a. Duality and statistical tests of optimality for two stage stochastic programs. Math. Programming 75 (2) 257-275. (Pubitemid 126393014)
    • (1996) Mathematical Programming, Series B , vol.75 , Issue.2 , pp. 257-275
    • Higle, J.L.1    Sen, S.2
  • 20
    • 18844478539 scopus 로고    scopus 로고
    • Asymptotic properties of robust three-stage procedure based on bootstrap for M-estimator
    • DOI 10.1016/S0378-3758(02)00160-X, PII S037837580200160X
    • Hlávka, Z. 2003. Asymptotic properties of robust three-stage procedure based on bootstrap for M-estimator. J. Statist. Planning and Inference 115 (2) 637-656. (Pubitemid 36598480)
    • (2003) Journal of Statistical Planning and Inference , vol.115 , Issue.2 , pp. 637-656
    • Hlavka, Z.1
  • 22
    • 33644525898 scopus 로고    scopus 로고
    • Discrete optimization via simulation using COMPASS
    • Hong, L. J., B. L. Nelson. 2006. Discrete optimization via simulation using COMPASS. Oper. Res. 54 (1) 115-129.
    • (2006) Oper. Res. , vol.54 , Issue.1 , pp. 115-129
    • Hong, L.J.1    Nelson, B.L.2
  • 24
    • 34249830842 scopus 로고
    • Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs
    • Infanger, G. 1992. Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Ann. Oper. Res. 39 69-95.
    • (1992) Ann. Oper. Res. , vol.39 , pp. 69-95
    • Infanger, G.1
  • 25
    • 0346963698 scopus 로고    scopus 로고
    • A fully sequential procedure for indifference-zone selection in simulation
    • Kim, S.-H., B. L. Nelson. 2001. A fully sequential procedure for indifference-zone selection in simulation. ACM Trans. Modeling Comput. Simulation 11 (3) 251-273.
    • (2001) ACM Trans. Modeling Comput. Simulation , vol.11 , Issue.3 , pp. 251-273
    • Kim, S.-H.1    Nelson, B.L.2
  • 26
    • 33744788406 scopus 로고    scopus 로고
    • On the asymptotic validity of fully sequential selection procedures for steady-state simulation
    • DOI 10.1287/opre.1060.0281
    • Kim, S.-H., B. L. Nelson. 2006. On the asymptotic validity of fully sequential selection procedures for steady-state simulation. Oper. Res. 54 (3) 475-488. (Pubitemid 43838360)
    • (2006) Operations Research , vol.54 , Issue.3 , pp. 475-488
    • Kim, S.-H.1    Nelson, B.L.2
  • 27
    • 84883754314 scopus 로고    scopus 로고
    • Validation analysis of robust stochastic approximation method
    • Online. Accessed June 4, 2011
    • Lan, G., A. Nemirovski, A. Shapiro. 2008. Validation analysis of robust stochastic approximation method. Optim. Online. Accessed June 4, 2011, http://www.optimization-online.org.
    • (2008) Optim
    • Lan, G.1    Nemirovski, A.2    Shapiro, A.3
  • 29
    • 33644697284 scopus 로고    scopus 로고
    • The empirical behavior of sampling methods for stochastic programming
    • DOI 10.1007/s10479-006-6169-8
    • Linderoth, J., A. Shapiro, S. Wright. 2006. The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142 215-241. (Pubitemid 43334036)
    • (2006) Annals of Operations Research , vol.142 , Issue.1 , pp. 215-241
    • Linderoth, J.1    Shapiro, A.2    Wright, S.3
  • 30
    • 0032632474 scopus 로고    scopus 로고
    • Monte Carlo bounding techniques for determining solution quality in stochastic programs
    • Mak, W., D. P. Morton, R. K. Wood. 1999. Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24 (1-2) 47-56.
    • (1999) Oper. Res. Lett. , vol.24 , Issue.1-2 , pp. 47-56
    • Mak, W.1    Morton, D.P.2    Wood, R.K.3
  • 31
    • 0032155337 scopus 로고    scopus 로고
    • Stopping rules for a class of sampling-based stochastic programming algorithms
    • Morton, D. P. 1998. Stopping rules for a class of sampling-based stochastic programming algorithms. Oper. Res. 46 (5) 710-718. (Pubitemid 128655452)
    • (1998) Operations Research , vol.46 , Issue.5 , pp. 710-718
    • Morton, D.P.1
  • 32
    • 17644362944 scopus 로고
    • An extension of a theorem of Chow and Robbins on sequential confidence intervals for the mean
    • Nadas, A. 1969. An extension of a theorem of Chow and Robbins on sequential confidence intervals for the mean. Ann. Math. Statist. 40 (2) 667-671.
    • (1969) Ann. Math. Statist. , vol.40 , Issue.2 , pp. 667-671
    • Nadas, A.1
  • 33
    • 0001454014 scopus 로고    scopus 로고
    • A branch and bound method for stochastic global optimization
    • PII S0025561098000094
    • Norkin, V., G. Pflug, A. Ruszczyński. 1998. A branch and bound method for stochastic global optimization. Math. Programming 83 (3) 425-450. (Pubitemid 128431423)
    • (1998) Mathematical Programming, Series B , vol.83 , Issue.3 , pp. 425-450
    • Norkin, V.I.1    Pflug, G.Ch.2    Ruszczynski, A.3
  • 34
    • 0002015332 scopus 로고
    • Stepsize rules, stopping times and their implementations in stochastic quasigradient algorithms
    • Y. Ermoliev, R. J.-B. Wets, eds, Springer-Verlag, Berlin
    • Pflug, G. C. 1988. Stepsize rules, stopping times and their implementations in stochastic quasigradient algorithms. Y. Ermoliev, R. J.-B. Wets, eds. Numerical Techniques for Stochastic Optimization. Springer-Verlag, Berlin.
    • (1988) Numerical Techniques for Stochastic Optimization
    • Pflug, G.C.1
  • 36
    • 43649092507 scopus 로고    scopus 로고
    • Efficient sample sizes in stochastic nonlinear programming
    • DOI 10.1016/j.cam.2007.02.014, PII S037704270700091X
    • Polak, E., J. Royset. 2008. Efficient sample sizes in stochastic nonlinear programming. J. Comput. Appl. Math. 217 (2) 301-310. (Pubitemid 351685750)
    • (2008) Journal of Computational and Applied Mathematics , vol.217 , Issue.2 , pp. 301-310
    • Polak, E.1    Royset, J.O.2
  • 38
    • 0004250318 scopus 로고    scopus 로고
    • 5th ed. Prentice Hall, Englewood Cliffs, NJ
    • Ross, S. 1998. A First Course in Probability, 5th ed. Prentice Hall, Englewood Cliffs, NJ.
    • (1998) A First Course in Probability
    • Ross, S.1
  • 40
    • 0022751475 scopus 로고
    • A regularized decomposition method for minimizing a sum of polyhedral functions
    • Ruszczyński, A. 1986. A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Programming 35 (3) 309-333.
    • (1986) Math. Programming , vol.35 , Issue.3 , pp. 309-333
    • Ruszczyński, A.1
  • 41
    • 0031222339 scopus 로고    scopus 로고
    • Accelerating the regularized decomposition method for two stage stochastic linear problems
    • PII S0377221796004018
    • Ruszczyński, A., A. Świetanowski. 1997. Accelerating the regularized decomposition method for two stage stochastic linear problems. Eur. J. Oper. Res. 101 (2) 328-342. (Pubitemid 127402104)
    • (1997) European Journal of Operational Research , vol.101 , Issue.2 , pp. 328-342
    • Ruszczynski, A.1    Swietanowski, A.2
  • 43
    • 3943087919 scopus 로고    scopus 로고
    • Conditioning of convex piecewise linear stochastic programs
    • DOI 10.1007/s10107-002-0313-2
    • Shapiro, A., T. Homem-de-Mello, J. Kim. 2002. Conditioning of convex piecewise linear stochastic programs. Math. Programming 94 (1) 1-19. (Pubitemid 44744728)
    • (2002) Mathematical Programming, Series B , vol.94 , Issue.1 , pp. 1-19
    • Shapiro, A.1    Homem-De-Mello, T.2    Kim, J.3
  • 44
    • 0000350399 scopus 로고    scopus 로고
    • Nested partitions method for stochastic optimization
    • Shi, L., S. Ólafsson. 2000a. Nested partitions method for stochastic optimization. Methodology Comput. Appl. Probab. 2 (3) 271-291.
    • (2000) Methodology Comput. Appl. Probab. , vol.2 , Issue.3 , pp. 271-291
    • Shi, L.1    Ólafsson, S.2
  • 45
    • 77955071405 scopus 로고    scopus 로고
    • Stopping rules for the stochastic nested partitions method
    • Shi, L., S. Ólafsson. 2000b. Stopping rules for the stochastic nested partitions method. Methodology Comput. Appl. Probab. 2 (1) 37-58.
    • (2000) Methodology Comput. Appl. Probab. , vol.2 , Issue.1 , pp. 37-58
    • Shi, L.1    Ólafsson, S.2
  • 46
    • 0014534894 scopus 로고
    • L-shaped linear programs with applications to optimal control and stochastic programming
    • Van Slyke, R., R. J.-B. Wets. 1969. L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17 (4) 638-663.
    • (1969) SIAM J. Appl. Math. , vol.17 , Issue.4 , pp. 638-663
    • Van Slyke, R.1    Wets, R.J.-B.2
  • 47
    • 0037322974 scopus 로고    scopus 로고
    • The sample average approximation method applied to stochastic vehicle routing problems: A computational study
    • Verweij, B., S. Ahmed, A. Kleywegt, G. Nemhauser, A. Shapiro. 2003. The sample average approximation method applied to stochastic vehicle routing problems: A computational study. Comput. Optim. Appl. 24 (2-3) 289-333.
    • (2003) Comput. Optim. Appl. , vol.24 , Issue.2-3 , pp. 289-333
    • Verweij, B.1    Ahmed, S.2    Kleywegt, A.3    Nemhauser, G.4    Shapiro, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.