메뉴 건너뛰기




Volumn 40, Issue 3, 2007, Pages 211-221

The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors

Author keywords

Artificial neural networks; Length of stay prediction; Outcome prediction; Postoperative cardiac surgical patients

Indexed keywords

CARDIAC PATIENTS; OUTCOME PREDICTION; POSTOPERATIVE CARDIAC SURGICAL PATIENTS; STAY PREDICTION;

EID: 34447273327     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2007.04.005     Document Type: Article
Times cited : (69)

References (28)
  • 1
    • 0035132459 scopus 로고    scopus 로고
    • Determinants of intensive care unit length of stay after coronary artery bypass graft surgery
    • Doering L.V., Esmailian F., Imperial-Perez F., and Monsein S. Determinants of intensive care unit length of stay after coronary artery bypass graft surgery. Heart Lung 30 1 (2001) 9-17
    • (2001) Heart Lung , vol.30 , Issue.1 , pp. 9-17
    • Doering, L.V.1    Esmailian, F.2    Imperial-Perez, F.3    Monsein, S.4
  • 2
    • 0022256529 scopus 로고
    • APACHE II: a severity of disease classification system
    • Knaus W.A., Draper E.A., Wagner D.P., and Zimmerman J.E. APACHE II: a severity of disease classification system. Crit Care Med 13 10 (1985) 818-829
    • (1985) Crit Care Med , vol.13 , Issue.10 , pp. 818-829
    • Knaus, W.A.1    Draper, E.A.2    Wagner, D.P.3    Zimmerman, J.E.4
  • 3
    • 0030793791 scopus 로고    scopus 로고
    • Predictors of outcome in cardiac surgical patients with prolonged ICU stay
    • Rady M.Y., Ryan T., and Starr N.J. Predictors of outcome in cardiac surgical patients with prolonged ICU stay. Chest 112 4 (1997) 1035-1042
    • (1997) Chest , vol.112 , Issue.4 , pp. 1035-1042
    • Rady, M.Y.1    Ryan, T.2    Starr, N.J.3
  • 4
    • 0037250746 scopus 로고    scopus 로고
    • Early indicators of prolonged intensive care unit stay: impact of illness severity, physician staffing, and pre-intensive care unit length of stay
    • Higgins T., McGee W., Steingrub J., Rapoport J., Lemeshow S., and Teres D. Early indicators of prolonged intensive care unit stay: impact of illness severity, physician staffing, and pre-intensive care unit length of stay. Crit Care Med 31 1 (2003) 45-51
    • (2003) Crit Care Med , vol.31 , Issue.1 , pp. 45-51
    • Higgins, T.1    McGee, W.2    Steingrub, J.3    Rapoport, J.4    Lemeshow, S.5    Teres, D.6
  • 5
    • 0027132478 scopus 로고
    • A new simplified acute physiology score (SAPS II) based on a European/North American multi-center study
    • Le Gall J.R., Lemeshow S., and Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multi-center study. J Am Med Assoc 270 (1993) 2957-2963
    • (1993) J Am Med Assoc , vol.270 , pp. 2957-2963
    • Le Gall, J.R.1    Lemeshow, S.2    Saulnier, F.3
  • 6
    • 3343019343 scopus 로고    scopus 로고
    • Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines
    • Burton A., and Altman D.G. Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines. Br J Cancer 91 1 (2004) 4-8
    • (2004) Br J Cancer , vol.91 , Issue.1 , pp. 4-8
    • Burton, A.1    Altman, D.G.2
  • 8
    • 0034970122 scopus 로고    scopus 로고
    • Clinical decision support systems for intensive care units: using artificial neural networks
    • Frize M., Ennett C.M., Stevenson M., and Trigg H.C. Clinical decision support systems for intensive care units: using artificial neural networks. Med Eng Phys 23 (2001) 217-225
    • (2001) Med Eng Phys , vol.23 , pp. 217-225
    • Frize, M.1    Ennett, C.M.2    Stevenson, M.3    Trigg, H.C.4
  • 10
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, design, and application
    • Basheer I.A., and Hajmeer M. Artificial neural networks: fundamentals, design, and application. J Microbiol Meth 43 (2000) 3-31
    • (2000) J Microbiol Meth , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 11
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: a tutorial
    • Jain A.K., Jianchang M., and Mohiuddin K.M. Artificial neural networks: a tutorial. Computer 29 3 (1996) 31-44
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Jianchang, M.2    Mohiuddin, K.M.3
  • 12
    • 0022471098 scopus 로고
    • Learning representations by back propagating errors
    • Rumelhart D., Hinton D.E., and Williams R.J. Learning representations by back propagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.1    Hinton, D.E.2    Williams, R.J.3
  • 14
    • 0003577150 scopus 로고    scopus 로고
    • Berry M.J.A., and Linoff G. (Eds), Wiley, New York
    • In: Berry M.J.A., and Linoff G. (Eds). Data mining techniques (1997), Wiley, New York
    • (1997) Data mining techniques
  • 15
    • 0034159892 scopus 로고    scopus 로고
    • Predictions of coronary artery stenosis by artificial neural networks
    • Mobley B.A. Predictions of coronary artery stenosis by artificial neural networks. Artif Intell Med 18 (2000) 187-203
    • (2000) Artif Intell Med , vol.18 , pp. 187-203
    • Mobley, B.A.1
  • 16
    • 0142071011 scopus 로고    scopus 로고
    • Growing neural networks for a multivariate calibration and variable selection of time resolved measurements 2003
    • Dieterle F., Busche S., and Gauglitz G. Growing neural networks for a multivariate calibration and variable selection of time resolved measurements 2003. Anal Chim Acta 490 1-2 (2002) 71-83
    • (2002) Anal Chim Acta , vol.490 , Issue.1-2 , pp. 71-83
    • Dieterle, F.1    Busche, S.2    Gauglitz, G.3
  • 17
    • 0004176611 scopus 로고
    • Fisher L.D., and Van Belle G.V. (Eds), Wiley & Sons, New York
    • In: Fisher L.D., and Van Belle G.V. (Eds). Biostatistics (1993), Wiley & Sons, New York
    • (1993) Biostatistics
  • 18
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982) 29-36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 19
    • 0001066312 scopus 로고    scopus 로고
    • Optimal ensemble averaging for neural networks
    • Naftaly U., Intrator N., and Horn D. Optimal ensemble averaging for neural networks. Comput Neural Syst 8 (1997) 283-296
    • (1997) Comput Neural Syst , vol.8 , pp. 283-296
    • Naftaly, U.1    Intrator, N.2    Horn, D.3
  • 20
    • 2342599129 scopus 로고    scopus 로고
    • Improvement and automation of artificial neural networks to estimate medical outcomes
    • Ennett C.M., Frize M., and Charette E. Improvement and automation of artificial neural networks to estimate medical outcomes. Med Eng Phys 26 (2004) 321-328
    • (2004) Med Eng Phys , vol.26 , pp. 321-328
    • Ennett, C.M.1    Frize, M.2    Charette, E.3
  • 22
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh A., and Vedelsby J. (Eds), MIT Press, Cambridge
    • Neural network ensembles, cross validation, and active learning. In: Krogh A., and Vedelsby J. (Eds). Advances in neural information processing systems, vol. 7 (1995), MIT Press, Cambridge 231-238
    • (1995) Advances in neural information processing systems, vol. 7 , pp. 231-238
  • 23
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Bierman L. Bagging predictors. Mach Learn 24 (1996) 123-140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Bierman, L.1
  • 26
    • 16644380249 scopus 로고    scopus 로고
    • An artificial neural network ensemble to predict disposition and length of stay in children presenting with bronchiolitis
    • Walsh P., Cunningham P., Rothenberg S.J., O'Doherty S., Hoey H., and Healy R. An artificial neural network ensemble to predict disposition and length of stay in children presenting with bronchiolitis. Eur J Emergency Med 11 5 (2004) 259-264
    • (2004) Eur J Emergency Med , vol.11 , Issue.5 , pp. 259-264
    • Walsh, P.1    Cunningham, P.2    Rothenberg, S.J.3    O'Doherty, S.4    Hoey, H.5    Healy, R.6
  • 27
    • 33644858420 scopus 로고    scopus 로고
    • Mortality assessment in intensive care units via adverse events using artificial neural networks
    • Silva A., Cortez P., Santos M., Gomes L., and Neves J. Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med 36 3 (2006) 223-234
    • (2006) Artif Intell Med , vol.36 , Issue.3 , pp. 223-234
    • Silva, A.1    Cortez, P.2    Santos, M.3    Gomes, L.4    Neves, J.5
  • 28
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Zhou Z., Jiang Y., Yang Y., and Chen S. Lung cancer cell identification based on artificial neural network ensembles. Artif Intell Med 24 1 (2002) 25-36
    • (2002) Artif Intell Med , vol.24 , Issue.1 , pp. 25-36
    • Zhou, Z.1    Jiang, Y.2    Yang, Y.3    Chen, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.