메뉴 건너뛰기




Volumn 82, Issue , 2013, Pages 127-136

Predicting intrinsic brain activity

Author keywords

Effective connectivity; FMRI; Functional connectivity; Functional magnetic resonance imaging; Multi voxel pattern analysis; Multivariate; MVPA; Regression; Resting state

Indexed keywords

ACCURACY; ADULT; ARTICLE; BRAIN FUNCTION; BRAIN REGION; CONNECTOME; FEMALE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; HUMAN EXPERIMENT; IMAGE PROCESSING; MALE; MULTIVARIATE LOGISTIC REGRESSION ANALYSIS; NEUROANATOMY; NEUROIMAGING; NORMAL HUMAN; PREDICTION; PRIORITY JOURNAL; PROCESS OPTIMIZATION; REPRODUCIBILITY; RESTING STATE NETWORK; VOXEL BASED MORPHOMETRY;

EID: 84879725804     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2013.05.072     Document Type: Article
Times cited : (26)

References (61)
  • 1
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57(1):289-300.
    • (1995) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 83055172813 scopus 로고    scopus 로고
    • Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures
    • Braun U., Plichta M.M., Esslinger C., Sauer C., Haddad L., Grimm O., Mier D., Mohnke S., Heinz A., Erk S., et al. Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. NeuroImage 2012, 59:1404-1412.
    • (2012) NeuroImage , vol.59 , pp. 1404-1412
    • Braun, U.1    Plichta, M.M.2    Esslinger, C.3    Sauer, C.4    Haddad, L.5    Grimm, O.6    Mier, D.7    Mohnke, S.8    Heinz, A.9    Erk, S.10
  • 6
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17(1):113-126.
    • (2004) Neural Netw. , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 10
    • 0030175198 scopus 로고    scopus 로고
    • AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
    • Cox R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29:162-173.
    • (1996) Comput. Biomed. Res. , vol.29 , pp. 162-173
    • Cox, R.W.1
  • 11
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • Cox D.D., Savoy R.L. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage 2003, 19:261-270.
    • (2003) NeuroImage , vol.19 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 12
  • 13
    • 84863882574 scopus 로고    scopus 로고
    • A whole brain fMRI atlas generated via spatially constrained spectral clustering
    • Craddock R., James G., Holtzheimer P., Hu X., Mayberg H. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 2012, 33:1914. 10.1002/hbm.21333.
    • (2012) Hum. Brain Mapp. , vol.33 , pp. 1914
    • Craddock, R.1    James, G.2    Holtzheimer, P.3    Hu, X.4    Mayberg, H.5
  • 15
    • 0028190347 scopus 로고
    • Functional and effective connectivity in neuroimaging: a synthesis
    • Friston K.J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 1994, 2:56-78.
    • (1994) Hum. Brain Mapp. , vol.2 , pp. 56-78
    • Friston, K.J.1
  • 16
    • 0027138523 scopus 로고
    • Time dependent changes in effective connectivity measured with PET
    • Friston K.J., Frith C. Time dependent changes in effective connectivity measured with PET. Hum. Brain Mapp. 1993, 1:69-79.
    • (1993) Hum. Brain Mapp. , vol.1 , pp. 69-79
    • Friston, K.J.1    Frith, C.2
  • 18
  • 19
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • Haxby J.V., Gobbini M.I., Furey M.L., Ishai a, Schouten J.L., Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001, 293:2425-2430.
    • (2001) Science , vol.293 , pp. 2425-2430
    • Haxby, J.V.1    Gobbini, M.I.2    Furey, M.L.3    Ishai, A.4    Schouten, J.L.5    Pietrini, P.6
  • 20
    • 33745587777 scopus 로고    scopus 로고
    • Decoding mental states from brain activity in humans
    • Haynes J.D., Rees G. Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 2006, 7:523-534.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 523-534
    • Haynes, J.D.1    Rees, G.2
  • 21
    • 0036425968 scopus 로고    scopus 로고
    • Improved optimization for the robust and accurate linear registration and motion correction of brain images
    • Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 2002, 17:825-841.
    • (2002) NeuroImage , vol.17 , pp. 825-841
    • Jenkinson, M.1    Bannister, P.2    Brady, M.3    Smith, S.4
  • 22
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press, B. Schölkopf, C. Burges, A. Smola (Eds.)
    • Joachims T. Making large-scale support vector machine learning practical. Advances in Kernel Methods - Support Vector Learning 1999, MIT Press. B. Schölkopf, C. Burges, A. Smola (Eds.).
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 23
    • 17844380475 scopus 로고    scopus 로고
    • Decoding the visual and subjective contents of the human brain
    • Kamitani Y., Tong F. Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 2005, 8:679-685.
    • (2005) Nat. Neurosci. , vol.8 , pp. 679-685
    • Kamitani, Y.1    Tong, F.2
  • 26
    • 79955003759 scopus 로고    scopus 로고
    • Decoding fMRI brain states in real-time
    • LaConte S.M. Decoding fMRI brain states in real-time. NeuroImage 2011, 56:440-454.
    • (2011) NeuroImage , vol.56 , pp. 440-454
    • LaConte, S.M.1
  • 28
    • 19344370474 scopus 로고    scopus 로고
    • Support vector machines for temporal classification of block design fMRI data
    • LaConte S.M., Strother S.C., Cherkassky V., Anderson J., Hu X.P. Support vector machines for temporal classification of block design fMRI data. NeuroImage 2005, 26:317-329.
    • (2005) NeuroImage , vol.26 , pp. 317-329
    • LaConte, S.M.1    Strother, S.C.2    Cherkassky, V.3    Anderson, J.4    Hu, X.P.5
  • 29
    • 35148882447 scopus 로고    scopus 로고
    • Real-time fMRI using brain-state classification
    • LaConte S.M., Peltier S.J., Hu X.P. Real-time fMRI using brain-state classification. Hum. Brain Mapp. 2007, 28:1033-1044.
    • (2007) Hum. Brain Mapp. , vol.28 , pp. 1033-1044
    • LaConte, S.M.1    Peltier, S.J.2    Hu, X.P.3
  • 31
    • 84855419311 scopus 로고    scopus 로고
    • Critical comments on dynamic causal modelling
    • Lohmann G., Erfurth K., Müller K., Turner R. Critical comments on dynamic causal modelling. NeuroImage 2012, 59(3):2322-2329.
    • (2012) NeuroImage , vol.59 , Issue.3 , pp. 2322-2329
    • Lohmann, G.1    Erfurth, K.2    Müller, K.3    Turner, R.4
  • 34
    • 0028312413 scopus 로고
    • Structural equation modeling and its application to network analysis in functional brain imaging
    • McIntosh A.R., Gonzalez-Lima F. Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp. 1994, 2(1-2):2-22.
    • (1994) Hum. Brain Mapp. , vol.2 , Issue.1-2 , pp. 2-22
    • McIntosh, A.R.1    Gonzalez-Lima, F.2
  • 35
    • 0031835226 scopus 로고    scopus 로고
    • From sensation to cognition
    • Mesulam M.M. From sensation to cognition. Brain 1998, 121(Pt 6):1013-1052.
    • (1998) Brain , vol.121 , Issue.PART 6 , pp. 1013-1052
    • Mesulam, M.M.1
  • 37
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
    • Mourão-Miranda J., Bokde A.L.W., Born C., Hampel H., Stetter M. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage 2005, 28:980-995.
    • (2005) NeuroImage , vol.28 , pp. 980-995
    • Mourão-Miranda, J.1    Bokde, A.L.W.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 38
    • 0025034429 scopus 로고
    • Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE)
    • Mugler J.P., Brookman J.R. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn. Reson. Med. 1990, 15:152-157.
    • (1990) Magn. Reson. Med. , vol.15 , pp. 152-157
    • Mugler, J.P.1    Brookman, J.R.2
  • 40
    • 34548840105 scopus 로고    scopus 로고
    • How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration
    • Murphy K., Bodurka J., Bandettini P.a How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. NeuroImage 2007, 34:565-574.
    • (2007) NeuroImage , vol.34 , pp. 565-574
    • Murphy, K.1    Bodurka, J.2    Bandettini, P.3
  • 41
    • 29344464279 scopus 로고    scopus 로고
    • Category-specific cortical activity precedes retrieval during memory search
    • Polyn S.M., Natu V.S., Cohen J.D., Norman K.a Category-specific cortical activity precedes retrieval during memory search. Science 2005, 310:1963-1966.
    • (2005) Science , vol.310 , pp. 1963-1966
    • Polyn, S.M.1    Natu, V.S.2    Cohen, J.D.3    Norman, K.A.4
  • 42
    • 84855455705 scopus 로고    scopus 로고
    • Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
    • Power J.D., Barnes K.a, Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 2012, 59:2142-2154.
    • (2012) NeuroImage , vol.59 , pp. 2142-2154
    • Power, J.D.1    Barnes, K.A.2    Snyder, A.Z.3    Schlaggar, B.L.4    Petersen, S.E.5
  • 43
    • 84855282767 scopus 로고    scopus 로고
    • Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty
    • Ryali S., Chen T., Supekar K., Menon V. Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. NeuroImage 2011, 59:3852-3861.
    • (2011) NeuroImage , vol.59 , pp. 3852-3861
    • Ryali, S.1    Chen, T.2    Supekar, K.3    Menon, V.4
  • 48
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B. A tutorial on support vector regression. Stat. Comput. 2004, 14:199-222.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 49
    • 0036681839 scopus 로고    scopus 로고
    • Making connections about brain connectivity
    • Stone J.V., Kötter R. Making connections about brain connectivity. Trends Cogn. Sci. 2002, 6:327-328.
    • (2002) Trends Cogn. Sci. , vol.6 , pp. 327-328
    • Stone, J.V.1    Kötter, R.2
  • 51
    • 0032401315 scopus 로고    scopus 로고
    • Complexity and coherency: integrating information in the brain
    • Tononi G. Complexity and coherency: integrating information in the brain. Trends Cogn. Sci. 1998, 2:474-484.
    • (1998) Trends Cogn. Sci. , vol.2 , pp. 474-484
    • Tononi, G.1
  • 52
    • 81155162516 scopus 로고    scopus 로고
    • The influence of head motion on intrinsic functional connectivity MRI
    • Van Dijk K.R.a., Sabuncu M.R., Buckner R.L. The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 2011, 59:431-438.
    • (2011) NeuroImage , vol.59 , pp. 431-438
    • Van Dijk, K.1    Sabuncu, M.R.2    Buckner, R.L.3
  • 53
    • 0000448091 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • MIT Press
    • Vapnik V., Golowich S., Smola A. Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information Processing Systems 1996, 9. MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.9
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 55
    • 79960466747 scopus 로고    scopus 로고
    • Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data
    • Wang J.-H., Zuo X.-N., Gohel S., Milham M.P., Biswal B.B., He Y. Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data. PLoS One 2011, 6:e21976.
    • (2011) PLoS One , vol.6
    • Wang, J.-H.1    Zuo, X.-N.2    Gohel, S.3    Milham, M.P.4    Biswal, B.B.5    He, Y.6
  • 56
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20:45-57.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 57
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67(2):301-320.
    • (2005) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 58
    • 44449144370 scopus 로고    scopus 로고
    • An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF
    • Zou Q.-H., Zhu C.-Z., Yang Y., Zuo X.-N., Long X.-Y., Cao Q.-J., Wang Y.-F., Zang Y.-F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 2008, 172:137-141.
    • (2008) J. Neurosci. Methods , vol.172 , pp. 137-141
    • Zou, Q.-H.1    Zhu, C.-Z.2    Yang, Y.3    Zuo, X.-N.4    Long, X.-Y.5    Cao, Q.-J.6    Wang, Y.-F.7    Zang, Y.-F.8
  • 59
    • 71849096723 scopus 로고    scopus 로고
    • Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach
    • Zuo X.-N., Kelly C., Adelstein J.S., Klein D.F., Castellanos F.X., Milham M.P. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. NeuroImage 2010, 49:2163-2177.
    • (2010) NeuroImage , vol.49 , pp. 2163-2177
    • Zuo, X.-N.1    Kelly, C.2    Adelstein, J.S.3    Klein, D.F.4    Castellanos, F.X.5    Milham, M.P.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.