-
1
-
-
0036013593
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.74.47
-
R. Albert and A. Barabási, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.74.47 74, 47 (2002).
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 47
-
-
Albert, R.1
Barabási, A.2
-
2
-
-
0038718854
-
-
SIREAD 0036-1445 10.1137/S003614450342480
-
M. Newman, SIAM Rev. SIREAD 0036-1445 10.1137/S003614450342480 45, 167 (2003).
-
(2003)
SIAM Rev.
, vol.45
, pp. 167
-
-
Newman, M.1
-
4
-
-
0004219960
-
-
Academic Press, New York
-
B. Bollobás, Random Graphs (Academic Press, New York, 1985).
-
(1985)
Random Graphs
-
-
Bollobás, B.1
-
5
-
-
0004148294
-
-
edited by M. Kochen (Ablex, Norwood
-
The Small World, edited by, M. Kochen, (Ablex, Norwood, 1989).
-
(1989)
The Small World
-
-
-
6
-
-
0004081447
-
-
Princeton University Press, Princeton
-
D. Watts, Small Worlds (Princeton University Press, Princeton, 1999).
-
(1999)
Small Worlds
-
-
Watts, D.1
-
7
-
-
0034633749
-
-
PNASA6 0027-8424 10.1073/pnas.200327197
-
L. Amaral, A. Scala, M. Barthélemy, and H. Stanley, Proc. Natl. Acad. Sci. U.S.A. PNASA6 0027-8424 10.1073/pnas.200327197 97, 11149 (2000).
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 11149
-
-
Amaral, L.1
Scala, A.2
Barthélemy, M.3
Stanley, H.4
-
8
-
-
34548106314
-
-
As computed by the average shortest distance between any two nodes.
-
As computed by the average shortest distance between any two nodes.
-
-
-
-
11
-
-
0032482432
-
-
NATUAS 0028-0836 10.1038/30918
-
D. Watts and S. Strogatz, Nature (London) NATUAS 0028-0836 10.1038/30918 393, 440 (1998).
-
(1998)
Nature (London)
, vol.393
, pp. 440
-
-
Watts, D.1
Strogatz, S.2
-
12
-
-
84987663106
-
-
Lecture Notes in Physics edited by E. Ben-Naim P. Krapivsky, and S. Redner Springer, Berlin
-
G. Szabó, M. Alava, and J. Kertész, in Complex Networks, Vol. 650 of Lecture Notes in Physics, edited by, E. Ben-Naim, P. Krapivsky, and, S. Redner, (Springer, Berlin, 2004), pp. 139-162.
-
(2004)
Complex Networks
, vol.650
, pp. 139-162
-
-
Szabó, G.1
Alava, M.2
Kertész, J.3
-
13
-
-
34548073317
-
-
We also suppose that self-interactions are not allowed, i.e., aii =0, all i.
-
We also suppose that self-interactions are not allowed, i.e., aii =0, all i.
-
-
-
-
14
-
-
34548080617
-
-
From now on we will assume that the denominators of CCs are well defined. If not, we will simply set the CC to 0.
-
From now on we will assume that the denominators of CCs are well defined. If not, we will simply set the CC to 0.
-
-
-
-
15
-
-
1642308591
-
-
PNASA6 0027-8424 10.1073/pnas.0400087101
-
A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, Proc. Natl. Acad. Sci. U.S.A. PNASA6 0027-8424 10.1073/pnas.0400087101 101, 3747 (2004).
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 3747
-
-
Barrat, A.1
Barthélemy, M.2
Pastor-Satorras, R.3
Vespignani, A.4
-
17
-
-
9944264452
-
-
PHYADX 0378-4371 10.1016/j.physa.2004.08.047
-
M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Physica A PHYADX 0378-4371 10.1016/j.physa.2004.08.047 346, 34 (2005).
-
(2005)
Physica A
, vol.346
, pp. 34
-
-
Barthélemy, M.1
Barrat, A.2
Pastor-Satorras, R.3
Vespignani, A.4
-
19
-
-
30344443646
-
-
SCIEAS 0036-8075 10.1126/science.1116869
-
G. Kossinets and D. Watts, Science SCIEAS 0036-8075 10.1126/science. 1116869 311, 88 (2006).
-
(2006)
Science
, vol.311
, pp. 88
-
-
Kossinets, G.1
Watts, D.2
-
20
-
-
34547457209
-
-
PLEEE8 1063-651X
-
J. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, M. Argollo de Menezes, K. Kaski, A. Barabási, and S. Kertész, New. J. Phys. PLEEE8 1063-651X 9, 179 (2007).
-
(2007)
New. J. Phys.
, vol.9
, pp. 179
-
-
Onnela, J.1
Saramäki, J.2
Hyvönen, J.3
Szabó, G.4
Argollo De Menezes, M.5
Kaski, K.6
Barabási, A.7
Kertész, S.8
-
21
-
-
34548094554
-
-
If some wij >1, one can divide all weights by maxi,j { wij }.
-
If some wij >1, one can divide all weights by maxi,j { wij }.
-
-
-
-
22
-
-
33847254923
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.75.027105
-
J. Saramaki, M. Kivelä, J. Onnela, K. Kaski, and J. Kertész, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.75.027105 75, 027105 (2007).
-
(2007)
Phys. Rev. e
, vol.75
, pp. 027105
-
-
Saramaki, J.1
Kivelä, M.2
Onnela, J.3
Kaski, K.4
Kertész, J.5
-
23
-
-
27944480531
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.71.065103
-
J. P. Onnela, J. Saramaki, J. Kertész, and K. Kaski, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.71.065103 71, 065103 (R) (2005).
-
(2005)
Phys. Rev. e
, vol.71
, pp. 065103
-
-
Onnela, J.P.1
Saramaki, J.2
Kertész, J.3
Kaski, K.4
-
24
-
-
33750466861
-
-
PHYADX 0378-4371 10.1016/j.physa.2006.04.066
-
P. Holme, S. Park, B. Kim, and C. Edling, Physica A PHYADX 0378-4371 10.1016/j.physa.2006.04.066 373, 821 (2007).
-
(2007)
Physica A
, vol.373
, pp. 821
-
-
Holme, P.1
Park, S.2
Kim, B.3
Edling, C.4
-
25
-
-
34548087548
-
-
1544-6115
-
B. Zhang and S. Hovarth, Stat. Appl. Genet. Mol. Biol. 4, (1), article 17 (2005), available online at http://www.bepress.com/sagmb/vol4/iss1/art17. 1544-6115
-
(2005)
Stat. Appl. Genet. Mol. Biol.
, vol.4
, Issue.1
-
-
Zhang, B.1
Hovarth, S.2
-
26
-
-
33748746298
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.66.066702
-
P. Grindrod, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.66.066702 66, 066702 (2002).
-
(2002)
Phys. Rev. e
, vol.66
, pp. 066702
-
-
Grindrod, P.1
-
27
-
-
34547303329
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.76.016101
-
S. Ahnert, D. Garlaschelli, T. Fink, and G. Caldarelli, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.76.016101 76, 016101 (2007).
-
(2007)
Phys. Rev. e
, vol.76
, pp. 016101
-
-
Ahnert, S.1
Garlaschelli, D.2
Fink, T.3
Caldarelli, G.4
-
28
-
-
13544255314
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.188701
-
D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.188701 93, 188701 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 188701
-
-
Garlaschelli, D.1
Loffredo, M.I.2
-
29
-
-
4544324641
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.68.015101
-
M. A. Serrano and M. Boguñá, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.68.015101 68, 015101 (R) (2003).
-
(2003)
Phys. Rev. e
, vol.68
, pp. 015101
-
-
Serrano, M.A.1
Boguñá, M.2
-
30
-
-
21544444193
-
-
PHYADX 0378-4371 10.1016/j.physa.2005.02.075
-
D. Garlaschelli and M. Loffredo, Physica A PHYADX 0378-4371 10.1016/j.physa.2005.02.075 355, 138 (2005).
-
(2005)
Physica A
, vol.355
, pp. 138
-
-
Garlaschelli, D.1
Loffredo, M.2
-
31
-
-
34548056401
-
-
That is, sets of topologically equivalent subgraphs of a network.
-
That is, sets of topologically equivalent subgraphs of a network.
-
-
-
-
32
-
-
0037174670
-
-
SCIEAS 0036-8075 10.1126/science.298.5594.824
-
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Science SCIEAS 0036-8075 10.1126/science.298.5594.824 298, 824 (2002).
-
(2002)
Science
, vol.298
, pp. 824
-
-
Milo, R.1
Shen-Orr, S.2
Itzkovitz, S.3
Kashtan, N.4
Chklovskii, D.5
Alon, U.6
-
33
-
-
34548078660
-
-
Of course, by a symmetry argument, they actually reduce to four different distinct patterns (e.g., those in the first column). We will keep the classification in eight types for the sake of exposition.
-
Of course, by a symmetry argument, they actually reduce to four different distinct patterns (e.g., those in the first column). We will keep the classification in eight types for the sake of exposition.
-
-
-
-
34
-
-
34548067383
-
-
The CC in Eq. 10 is similar to that presented by but takes explicitly into account edge directionality in computing the maximum number of directed triangles (TiD). Conversely, set TiD = di (di -1).
-
The CC in Eq. 10 is similar to that presented by but takes explicitly into account edge directionality in computing the maximum number of directed triangles (TiD). Conversely, set TiD = di (di -1).
-
-
-
-
35
-
-
34548085113
-
-
That is, wij is a random variable equal to zero with probability 1-p and equal to a U (0,1] with probability p. Of course this admittedly naïve assumption is made for mathematical convenience to benchmark our results in a setup where one is completely ignorant about the true (observed) weight distribution. In empirical applications, one would hardly expect observed weights to follow such a trivial distribution and more realistic assumptions should be made. For example, the expected value of CCs might be computed by bootstrapping (i.e., reshuffling) the observed empirical distribution of weights in W across the same topological graph structure, as defined by the observed adjacency matrix A. See also below.
-
That is, wij is a random variable equal to zero with probability 1-p and equal to a U (0,1] with probability p. Of course this admittedly naïve assumption is made for mathematical convenience to benchmark our results in a setup where one is completely ignorant about the true (observed) weight distribution. In empirical applications, one would hardly expect observed weights to follow such a trivial distribution and more realistic assumptions should be made. For example, the expected value of CCs might be computed by bootstrapping (i.e., reshuffling) the observed empirical distribution of weights in W across the same topological graph structure, as defined by the observed adjacency matrix A. See also below.
-
-
-
-
36
-
-
34548106168
-
-
These patterns can be also labeled as "broken" cycles, where the two neighbors whom i attempts to build a cycle with actually invert the direction of the flow.
-
These patterns can be also labeled as "broken" cycles, where the two neighbors whom i attempts to build a cycle with actually invert the direction of the flow.
-
-
-
-
37
-
-
0038170352
-
-
0022-0027
-
K. Gleditsch, J. Conflict Resolut. 46, 712 (2002), available online at http://ibs.colorado.edu/ ksg/trade/ 0022-0027
-
(2002)
J. Conflict Resolut.
, vol.46
, pp. 712
-
-
Gleditsch, K.1
-
38
-
-
34548062584
-
-
That is, the most recent year available in the database. This also allows us to keep our discussion similar to that in.
-
That is, the most recent year available in the database. This also allows us to keep our discussion similar to that in.
-
-
-
-
39
-
-
34548058060
-
-
Dividing by GD Pj would of course require a complementary analysis. Notice also that defines adjusted exports as e (i,j) =e (j,i) = [x (i,j) +m (j,i) +x (j,i) +m (i,j)] 2 thus obtaining an undirected binary or weighted network by construction.
-
Dividing by GD Pj would of course require a complementary analysis. Notice also that defines adjusted exports as e (i,j) =e (j,i) = [x (i,j) +m (j,i) +x (j,i) +m (i,j)] 2 thus obtaining an undirected binary or weighted network by construction.
-
-
-
-
40
-
-
34548082515
-
-
Here and in what follows, by correlation (or correlation coefficient) between two variables X and Y, we mean the Spearman product-moment sample correlation, defined as i (xi - x̄) (yi - ȳ) [(N-1) sX sY], where sX and sY are sample standard deviations. All correlation coefficients have been computed on original (linear) data, albeit log-log plots (in base 10) are sometime displayed.
-
Here and in what follows, by correlation (or correlation coefficient) between two variables X and Y, we mean the Spearman product-moment sample correlation, defined as i (xi - x̄) (yi - ȳ) [(N-1) sX sY], where sX and sY are sample standard deviations. All correlation coefficients have been computed on original (linear) data, albeit log-log plots (in base 10) are sometime displayed.
-
-
-
-
41
-
-
42649099396
-
-
PLEEE8 1063-651X
-
G. Fagiolo, Econ. Bull. PLEEE8 1063-651X 3, 1 (2007).
-
(2007)
Econ. Bull.
, vol.3
, pp. 1
-
-
Fagiolo, G.1
-
42
-
-
34548094027
-
-
Accordingly, one has that fi cyc =0.2499, fi mid =0.2501, fi in =0.2531, and fi out =0.2469.
-
Accordingly, one has that fi cyc =0.2499, fi mid =0.2501, fi in =0.2531, and fi out =0.2469.
-
-
-
-
43
-
-
34548074943
-
-
To compute such expected values, we randomly reshuffled WTN weights in W (by keeping A fixed) and computed averages/standard deviations of CCs over M=10000 independent replications.
-
To compute such expected values, we randomly reshuffled WTN weights in W (by keeping A fixed) and computed averages/standard deviations of CCs over M=10000 independent replications.
-
-
-
-
44
-
-
34548068825
-
-
edited by J. van Leeuwen, Handbook of Theoretical Computer Science Vol. Elsevier, Amsterdam
-
Algorithms and Complexity, edited by, J. van Leeuwen, Handbook of Theoretical Computer Science Vol. A (Elsevier, Amsterdam, 1999).
-
(1999)
Algorithms and Complexity
-
-
|