-
1
-
-
77956301323
-
Four-qubit entanglement classification from string theory
-
Borsten, L, Dahanayake, D, Duff, MJ, Marrani, A and Rubens, W. 2010. Four-qubit entanglement classification from string theory. Phys. Rev. Lett., 105: 4
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 4
-
-
Borsten, L.1
Dahanayake, D.2
Duff, M.J.3
Marrani, A.4
Rubens, W.5
-
2
-
-
84864591087
-
On the hyperdeterminant for 2 × 2 × 3 arrays
-
Bremner, MR. 2012. On the hyperdeterminant for 2 × 2 × 3 arrays. Linear Multilinear Algebra, 60: 921 - 932.
-
(2012)
Linear Multilinear Algebra
, vol.60
, pp. 921-932
-
-
Bremner, M.R.1
-
3
-
-
84859557337
-
Cayley's hyperdeterminant: a combinatorial approach via representation theory
-
Bremner, MR, Bickis, MG and Soltanifar, M. 2012. Cayley's hyperdeterminant: a combinatorial approach via representation theory. Linear Algebra Appl., 437: 94 - 112.
-
(2012)
Linear Algebra Appl.
, vol.437
, pp. 94-112
-
-
Bremner, M.R.1
Bickis, M.G.2
Soltanifar, M.3
-
5
-
-
0142260903
-
A complete set of covariants of the four qubit system
-
Briand, E, Luque, J-G and Thibon, J-Y. 2003. A complete set of covariants of the four qubit system. J. Phys. A, 36: 9915 - 9927.
-
(2003)
J. Phys. A
, vol.36
, pp. 9915-9927
-
-
Briand, E.1
Luque, J.-G.2
Thibon, J.-Y.3
-
6
-
-
84991955466
-
Algebraic Measures of Entanglement
-
Boca Raton, FL,: Computational Mathematics Series, Chapman & Hall/CRC
-
Brylinski, J-L. 2002. " Algebraic Measures of Entanglement ". In Mathematics of Quantum Computation, Boca Raton, FL: Computational Mathematics Series, Chapman & Hall/CRC.
-
(2002)
Mathematics of Quantum Computation
-
-
Brylinski, J.-L.1
-
7
-
-
0002093582
-
On the theory of linear transformations
-
Cayley, A. 1845. On the theory of linear transformations. Cambridge Math. J., 4: 193 - 209.
-
(1845)
Cambridge Math. J.
, vol.4
, pp. 193-209
-
-
Cayley, A.1
-
9
-
-
84891283756
-
-
Chichester, West Sussex,: Wiley
-
Cichocki, A, Zdunek, R, Phan, AH and Amari, S. 2009. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, Chichester, West Sussex: Wiley.
-
(2009)
Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation
-
-
Cichocki, A.1
Zdunek, R.2
Phan, A.H.3
Amari, S.4
-
10
-
-
55349142218
-
Tensor rank and the ill-posedness of the best low-rank approximation problem
-
de Silva, V and Lim, L-H. 2008. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl., 30: 1084 - 1127.
-
(2008)
SIAM J. Matrix Anal. Appl.
, vol.30
, pp. 1084-1127
-
-
de Silva, V.1
Lim, L.-H.2
-
11
-
-
64149108857
-
On polynomial invariants of several qubits
-
Djoković, DZ and Osterloh, A. 2009. On polynomial invariants of several qubits. J. Math. Phys., 50: 23
-
(2009)
J. Math. Phys.
, vol.50
, pp. 23
-
-
Djoković, D.Z.1
Osterloh, A.2
-
12
-
-
0033095689
-
Canonical forms of two by two by two matrices
-
Ehrenborg, R. 1999. Canonical forms of two by two by two matrices. J. Algebra, 213: 195 - 224.
-
(1999)
J. Algebra
, vol.213
, pp. 195-224
-
-
Ehrenborg, R.1
-
13
-
-
0000237322
-
Hyperdeterminants
-
Gelfand, IM, Kapranov, MM and Zelevinsky, AV. 1992. Hyperdeterminants. Adv. Math., 96: 226 - 263.
-
(1992)
Adv. Math.
, vol.96
, pp. 226-263
-
-
Gelfand, I.M.1
Kapranov, M.M.2
Zelevinsky, A.V.3
-
14
-
-
0004057454
-
-
Boston, Basel,: Birkhäuser
-
Gelfand, IM, Kapranov, MM and Zelevinsky, AV. 1994. Discriminants, Resultants, and Multidimensional Determinants, Boston, Basel: Birkhäuser.
-
(1994)
Discriminants, Resultants, and Multidimensional Determinants
-
-
Gelfand, I.M.1
Kapranov, M.M.2
Zelevinsky, A.V.3
-
15
-
-
78650626573
-
All maximally entangled four-qubit states
-
Gour, G and Wallach, NR. 2010. All maximally entangled four-qubit states. J. Math. Phys., 51: 24
-
(2010)
J. Math. Phys.
, vol.51
, pp. 24
-
-
Gour, G.1
Wallach, N.R.2
-
16
-
-
47249159040
-
The hyperdeterminant and triangulations of the 4-cube
-
Huggins, P, Sturmfels, B, Yu, J and Yuster, DS. 2008. The hyperdeterminant and triangulations of the 4-cube. Math. Comput., 77: 1653 - 1679.
-
(2008)
Math. Comput.
, vol.77
, pp. 1653-1679
-
-
Huggins, P.1
Sturmfels, B.2
Yu, J.3
Yuster, D.S.4
-
18
-
-
68649096448
-
Tensor decompositions and applications
-
Kolda, TG and Bader, BW. 2009. Tensor decompositions and applications. SIAM Rev., 51: 455 - 500.
-
(2009)
SIAM Rev.
, vol.51
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
20
-
-
80052338279
-
Inductive entanglement classification of four qubits under stochastic local operations and classical communication
-
Lamata, L, León, J, Salgado, D and Solano, E. 2007. Inductive entanglement classification of four qubits under stochastic local operations and classical communication. Phys. Rev. A, 75: 9
-
(2007)
Phys. Rev. A
, vol.75
, pp. 9
-
-
Lamata, L.1
León, J.2
Salgado, D.3
Solano, E.4
-
22
-
-
84879649367
-
Sur les formes trilinéaires
-
Le Paige, C. 1881. Sur les formes trilinéaires. Comp. Acad. Sci., 92: 1103 - 1105.
-
(1881)
Comp. Acad. Sci.
, vol.92
, pp. 1103-1105
-
-
Le Paige, C.1
-
23
-
-
33746146484
-
On the geometry of four-qubit invariants
-
Lévay, P. 2006. On the geometry of four-qubit invariants. J. Phys. A, 39: 9533 - 9545.
-
(2006)
J. Phys. A
, vol.39
, pp. 9533-9545
-
-
Lévay, P.1
-
24
-
-
4243462237
-
Polynomial invariants of four qubits
-
Luque, J-G and Thibon, J-Y. 2003. Polynomial invariants of four qubits. Phys. Rev. A, 67: 5
-
(2003)
Phys. Rev. A
, vol.67
, pp. 5
-
-
Luque, J.-G.1
Thibon, J.-Y.2
-
25
-
-
34250201514
-
Nilpotent polynomial approach to four-qubit entanglement
-
Mandilara, A and Viola, L. 2007. Nilpotent polynomial approach to four-qubit entanglement. J. Phys. B, 40: S167 - S180.
-
(2007)
J. Phys. B
, vol.40
-
-
Mandilara, A.1
Viola, L.2
-
26
-
-
33748134978
-
On canonical binary trilinear forms
-
Oldenburger, R. 1932. On canonical binary trilinear forms. Bull. Am. Math. Soci., 38: 385 - 387.
-
(1932)
Bull. Am. Math. Soci.
, vol.38
, pp. 385-387
-
-
Oldenburger, R.1
-
27
-
-
33748176710
-
Real canonical binary trilinear forms
-
Oldenburger, R. 1937. Real canonical binary trilinear forms. Am. J. Math., 59: 427 - 435.
-
(1937)
Am. J. Math.
, vol.59
, pp. 427-435
-
-
Oldenburger, R.1
-
28
-
-
0038288052
-
Über binäre trilineare Formen
-
Schwartz, E. 1922. Über binäre trilineare Formen. Math. Zeitsch., 12: 18 - 35.
-
(1922)
Math. Zeitsch.
, vol.12
, pp. 18-35
-
-
Schwartz, E.1
-
29
-
-
19344375707
-
-
Chichester, West Sussex,: Wiley
-
Smilde, A, Bro, R and Geladi, P. 2004. Multi-way Analysis: Applications in the Chemical Sciences, Chichester, West Sussex: Wiley.
-
(2004)
Multi-way Analysis: Applications in the Chemical Sciences
-
-
Smilde, A.1
Bro, R.2
Geladi, P.3
-
30
-
-
73849084226
-
Invariants of binary bilinear forms modulo two
-
Smith, L and Stong, RE. 2010. Invariants of binary bilinear forms modulo two. Proc. Am. Math. Soc., 138: 17 - 26.
-
(2010)
Proc. Am. Math. Soc.
, vol.138
, pp. 17-26
-
-
Smith, L.1
Stong, R.E.2
-
31
-
-
0000020580
-
Kruskal's polynomial for 2 × 2 × 2 arrays, and a generalization to 2 × n × n arrays
-
ten Berge, JMF. 1991. Kruskal's polynomial for 2 × 2 × 2 arrays, and a generalization to 2 × n × n arrays. Psychometrika, 56: 631 - 636.
-
(1991)
Psychometrika
, vol.56
, pp. 631-636
-
-
ten Berge, J.M.F.1
-
32
-
-
0036577113
-
Four qubits can be entangled in nine different ways
-
Verstraete, F, Dehaene, J, De Moor, B and Verschelde, H. 2002. Four qubits can be entangled in nine different ways. Phys. Rev. A, 65: 5
-
(2002)
Phys. Rev. A
, vol.65
, pp. 5
-
-
Verstraete, F.1
Dehaene, J.2
De Moor, B.3
Verschelde, H.4
-
33
-
-
17444386726
-
The Hilbert series of measures of entanglement for 4 qubits
-
Wallach, NR. 2005. The Hilbert series of measures of entanglement for 4 qubits. Acta Appl. Math., 86: 203 - 220.
-
(2005)
Acta Appl. Math.
, vol.86
, pp. 203-220
-
-
Wallach, N.R.1
|