-
1
-
-
0002093582
-
On the theory of linear transformations
-
Available at
-
Cayley, A. 1845. On the theory of linear transformations. Cambridge Math. J., 4: 193-209. Available atwww.archive.org/details/collectedmathema01cayluoft
-
(1845)
Cambridge Math. J.
, vol.4
, pp. 193-209
-
-
Cayley, A.1
-
3
-
-
55349142218
-
Tensor rank and the ill-posedness of the best low-rank approximation problem
-
de Silva, V and Lim, L-H. 2008. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl., 30: 1084-1127.
-
(2008)
SIAM J. Matrix Anal. Appl.
, vol.30
, pp. 1084-1127
-
-
de Silva, V.1
Lim, L.-H.2
-
5
-
-
0000237322
-
Hyperdeterminants
-
Gelfand, IM, Kapranov, MM and Zelevinsky, AV. 1992. Hyperdeterminants. Adv. Math., 96: 226-263.
-
(1992)
Adv. Math.
, vol.96
, pp. 226-263
-
-
Gelfand, I.M.1
Kapranov, M.M.2
Zelevinsky, A.V.3
-
7
-
-
0004293970
-
-
New York: Interscience Publishers
-
Jacobson, N. 1962. Lie Algebras, New York: Interscience Publishers.
-
(1962)
Lie Algebras
-
-
Jacobson, N.1
-
8
-
-
68649096448
-
Tensor decompositions and applications
-
Kolda, TG and Bader, BW. 2009. Tensor decompositions and applications. SIAM Rev., 51: 455-500.
-
(2009)
SIAM Rev.
, vol.51
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
9
-
-
48749101457
-
Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
-
Kruskal, JB. 1977. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl., 18: 95-138.
-
(1977)
Linear Algebra Appl.
, vol.18
, pp. 95-138
-
-
Kruskal, J.B.1
-
10
-
-
79961157349
-
The rank of a 2 × 2 × 2 tensor
-
Martin, CD. 2011. The rank of a 2 × 2 × 2 tensor. Linear Multilinear Algebra, 59: 943-950.
-
(2011)
Linear Multilinear Algebra
, vol.59
, pp. 943-950
-
-
Martin, C.D.1
-
11
-
-
77955559162
-
Subtracting a best rank-1 approximation may increase tensor rank
-
Stegeman, A and Comon, P. 2010. Subtracting a best rank-1 approximation may increase tensor rank. Linear Algebra Appl., 433: 1276-1300.
-
(2010)
Linear Algebra Appl.
, vol.433
, pp. 1276-1300
-
-
Stegeman, A.1
Comon, P.2
-
13
-
-
0000020580
-
Kruskal's polynomial for 2 × 2 × 2 arrays and a generalization to 2 × n × n arrays
-
ten Berge, JMF. 1991. Kruskal's polynomial for 2 × 2 × 2 arrays and a generalization to 2 × n × n arrays. Psychometrika, 56: 631-636.
-
(1991)
Psychometrika
, vol.56
, pp. 631-636
-
-
ten Berge, J.M.F.1
|