메뉴 건너뛰기




Volumn 60, Issue 8, 2012, Pages 921-932

On the hyperdeterminant for 2 × 2 × 3 arrays

Author keywords

hyperdeterminant; invariant theory; multidimensional arrays; multilinear algebra; representation theory

Indexed keywords


EID: 84864591087     PISSN: 03081087     EISSN: 15635139     Source Type: Journal    
DOI: 10.1080/03081087.2011.634412     Document Type: Article
Times cited : (6)

References (13)
  • 1
    • 0002093582 scopus 로고
    • On the theory of linear transformations
    • Available at
    • Cayley, A. 1845. On the theory of linear transformations. Cambridge Math. J., 4: 193-209. Available atwww.archive.org/details/collectedmathema01cayluoft
    • (1845) Cambridge Math. J. , vol.4 , pp. 193-209
    • Cayley, A.1
  • 3
    • 55349142218 scopus 로고    scopus 로고
    • Tensor rank and the ill-posedness of the best low-rank approximation problem
    • de Silva, V and Lim, L-H. 2008. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl., 30: 1084-1127.
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , pp. 1084-1127
    • de Silva, V.1    Lim, L.-H.2
  • 7
    • 0004293970 scopus 로고
    • New York: Interscience Publishers
    • Jacobson, N. 1962. Lie Algebras, New York: Interscience Publishers.
    • (1962) Lie Algebras
    • Jacobson, N.1
  • 8
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda, TG and Bader, BW. 2009. Tensor decompositions and applications. SIAM Rev., 51: 455-500.
    • (2009) SIAM Rev. , vol.51 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 9
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • Kruskal, JB. 1977. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl., 18: 95-138.
    • (1977) Linear Algebra Appl. , vol.18 , pp. 95-138
    • Kruskal, J.B.1
  • 10
    • 79961157349 scopus 로고    scopus 로고
    • The rank of a 2 × 2 × 2 tensor
    • Martin, CD. 2011. The rank of a 2 × 2 × 2 tensor. Linear Multilinear Algebra, 59: 943-950.
    • (2011) Linear Multilinear Algebra , vol.59 , pp. 943-950
    • Martin, C.D.1
  • 11
    • 77955559162 scopus 로고    scopus 로고
    • Subtracting a best rank-1 approximation may increase tensor rank
    • Stegeman, A and Comon, P. 2010. Subtracting a best rank-1 approximation may increase tensor rank. Linear Algebra Appl., 433: 1276-1300.
    • (2010) Linear Algebra Appl. , vol.433 , pp. 1276-1300
    • Stegeman, A.1    Comon, P.2
  • 13
    • 0000020580 scopus 로고
    • Kruskal's polynomial for 2 × 2 × 2 arrays and a generalization to 2 × n × n arrays
    • ten Berge, JMF. 1991. Kruskal's polynomial for 2 × 2 × 2 arrays and a generalization to 2 × n × n arrays. Psychometrika, 56: 631-636.
    • (1991) Psychometrika , vol.56 , pp. 631-636
    • ten Berge, J.M.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.