메뉴 건너뛰기




Volumn 12, Issue 6, 2013, Pages 2885-2894

Partition and turnover of glutathione reductase from saccharomyces cerevisiae: A proteomic approach

Author keywords

glutathione reductase; mass spectrometry; N termini; protein turnover; proteomics; Saccharomyces cerevisiae

Indexed keywords

GLUTATHIONE REDUCTASE; N ACETYLMETHIONINE;

EID: 84879381996     PISSN: 15353893     EISSN: 15353907     Source Type: Journal    
DOI: 10.1021/pr4001948     Document Type: Article
Times cited : (85)

References (46)
  • 1
    • 0030004354 scopus 로고    scopus 로고
    • Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
    • Grant, C. M.; MacIver, F. H.; Dawes, I. W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae Curr. Genet. 1996, 29, 511-515
    • (1996) Curr. Genet. , vol.29 , pp. 511-515
    • Grant, C.M.1    MacIver, F.H.2    Dawes, I.W.3
  • 2
    • 0032439653 scopus 로고    scopus 로고
    • Oxidative stress responses of the yeast Saccharomyces cerevisiae
    • Jamieson, D. J. Oxidative stress responses of the yeast Saccharomyces cerevisiae Yeast. 1998, 14, 1511-1527
    • (1998) Yeast. , vol.14 , pp. 1511-1527
    • Jamieson, D.J.1
  • 3
    • 0036052119 scopus 로고    scopus 로고
    • An overview on glutathione in Saccharomyces versus non-conventional yeasts
    • Penninckx, M. J. An overview on glutathione in Saccharomyces versus non-conventional yeasts FEMS Yeast Res. 2002, 2, 295-305
    • (2002) FEMS Yeast Res. , vol.2 , pp. 295-305
    • Penninckx, M.J.1
  • 4
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy, M. P. How mitochondria produce reactive oxygen species Biochem. J. 2009, 417, 1-13
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 5
    • 33748132549 scopus 로고    scopus 로고
    • Redox regulatory mechanisms in cellular stress response
    • Fedoroff, N. Redox regulatory mechanisms in cellular stress response Ann. Bot. 2006, 98, 289-300
    • (2006) Ann. Bot. , vol.98 , pp. 289-300
    • Fedoroff, N.1
  • 6
    • 0035131144 scopus 로고    scopus 로고
    • Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
    • Grant, C. M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions Mol. Microbiol. 2001, 39, 533-541
    • (2001) Mol. Microbiol. , vol.39 , pp. 533-541
    • Grant, C.M.1
  • 7
    • 0028960573 scopus 로고
    • Isolation, characterization and overexpression of the yeast gene, GLR1 encoding glutathione reductase
    • Collinson, L. P.; Dawes, I. W. Isolation, characterization and overexpression of the yeast gene, GLR1 encoding glutathione reductase Gene 1995, 156, 123-127
    • (1995) Gene , vol.156 , pp. 123-127
    • Collinson, L.P.1    Dawes, I.W.2
  • 8
    • 1542319976 scopus 로고    scopus 로고
    • Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase
    • Outten, C. E.; Culotta, V. C. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase J. Biol. Chem. 2004, 279, 7785-7791
    • (2004) J. Biol. Chem. , vol.279 , pp. 7785-7791
    • Outten, C.E.1    Culotta, V.C.2
  • 9
    • 0036631379 scopus 로고    scopus 로고
    • How mitochondria import hydrophilic and hydrophobic proteins
    • Chacinska, A.; Pfanner, N.; Meisinger, C. How mitochondria import hydrophilic and hydrophobic proteins Trends Cell Biol. 2002, 12, 299-303
    • (2002) Trends Cell Biol. , vol.12 , pp. 299-303
    • Chacinska, A.1    Pfanner, N.2    Meisinger, C.3
  • 11
    • 34848823742 scopus 로고    scopus 로고
    • Mitochondrial protein-import machinery: Correlating structure with function
    • Baker, M.; Frazier, J. A. E.; Gulbis, J. M.; Ryan, M. T. Mitochondrial protein-import machinery: correlating structure with function Trends Cell Biol. 2007, 17, 456-464
    • (2007) Trends Cell Biol. , vol.17 , pp. 456-464
    • Baker, M.1    Frazier, J.A.E.2    Gulbis, J.M.3    Ryan, M.T.4
  • 13
    • 0026471632 scopus 로고
    • HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: Mutations alter the specificity of compartmentation
    • Chiu, M. I.; Mason, T. L.; Fink, G. R. HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: Mutations alter the specificity of compartmentation Genetics 1992, 132, 987-1001
    • (1992) Genetics , vol.132 , pp. 987-1001
    • Chiu, M.I.1    Mason, T.L.2    Fink, G.R.3
  • 14
    • 0023902156 scopus 로고
    • The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases
    • Chatton, B.; Walter, P.; Ebel, J. P.; Lacroute, F.; Fasiolo, F. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases J. Biol. Chem. 1988, 263, 52-57
    • (1988) J. Biol. Chem. , vol.263 , pp. 52-57
    • Chatton, B.1    Walter, P.2    Ebel, J.P.3    Lacroute, F.4    Fasiolo, F.5
  • 15
    • 0034655980 scopus 로고    scopus 로고
    • Disruption of cytoplasmic and mitochondrial folylpolyglutamate synthetase activity in Saccharomyces cerevisiae
    • DeSousa, L.; Shen, Y. A.; Bognar, L. Disruption of cytoplasmic and mitochondrial folylpolyglutamate synthetase activity in Saccharomyces cerevisiae Arch. Biochem. Biophys. 2000, 376, 299-312
    • (2000) Arch. Biochem. Biophys. , vol.376 , pp. 299-312
    • Desousa, L.1    Shen, Y.A.2    Bognar, L.3
  • 16
    • 0033533721 scopus 로고    scopus 로고
    • The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase i
    • Willer, M.; Rainey, M.; Pullen, T.; Stirling, C. J. The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase I Curr. Biol. 1999, 9, 1085-1094
    • (1999) Curr. Biol. , vol.9 , pp. 1085-1094
    • Willer, M.1    Rainey, M.2    Pullen, T.3    Stirling, C.J.4
  • 17
    • 0025107694 scopus 로고
    • Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes
    • Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 8301-8305
    • (1990) Proc. Natl. Acad. Sci. U.S.A. , vol.87 , pp. 8301-8305
    • Kozak, M.1
  • 18
    • 0037121050 scopus 로고    scopus 로고
    • Pushing the limits of the scanning mechanism for initiation of translation
    • Kozak, M. Pushing the limits of the scanning mechanism for initiation of translation Gene 2003, 299, 1-34
    • (2003) Gene , vol.299 , pp. 1-34
    • Kozak, M.1
  • 19
    • 9244222676 scopus 로고    scopus 로고
    • How strong is the case for regulation of the initiation step of translation by elements at the 3′ end of eukaryotic mRNAs?
    • Kozak, M. How strong is the case for regulation of the initiation step of translation by elements at the 3′ end of eukaryotic mRNAs? Gene 2004, 343, 41-54
    • (2004) Gene , vol.343 , pp. 41-54
    • Kozak, M.1
  • 20
    • 0023663451 scopus 로고
    • Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae mRNAs
    • Hamilton, R.; Watanabe, C. K.; Boer, H. A. Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae mRNAs Nucleic Acids Res. 1987, 15, 3581-3593
    • (1987) Nucleic Acids Res. , vol.15 , pp. 3581-3593
    • Hamilton, R.1    Watanabe, C.K.2    Boer, H.A.3
  • 21
    • 80053056359 scopus 로고    scopus 로고
    • Protein production in Saccharomyces cerevisiae for systems biology studies
    • Malys, N.; Wishart, J. A.; Oliver, S. G.; McCarthy, J. E. G. Protein production in Saccharomyces cerevisiae for systems biology studies Methods Enzymol. 2011, 500, 197-212
    • (2011) Methods Enzymol. , vol.500 , pp. 197-212
    • Malys, N.1    Wishart, J.A.2    Oliver, S.G.3    McCarthy, J.E.G.4
  • 22
    • 0020479807 scopus 로고
    • 2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria
    • 2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria J. Biol. Chem. 1982, 257, 13028-13033
    • (1982) J. Biol. Chem. , vol.257 , pp. 13028-13033
    • Daum, G.1    Böhni, P.C.2    Schatz, G.3
  • 23
    • 0028800976 scopus 로고
    • Isolation of highly purified mitochondria from Saccharomyces cerevisiae
    • Glick, B. S.; Pon, L. A. Isolation of highly purified mitochondria from Saccharomyces cerevisiae Methods Enzymol. 1995, 260, 213-223
    • (1995) Methods Enzymol. , vol.260 , pp. 213-223
    • Glick, B.S.1    Pon, L.A.2
  • 24
    • 0034672334 scopus 로고    scopus 로고
    • Purification of Saccharomycescerevisiae mitochondria devoid of microsomal and cytosolic contaminations
    • Meisinger, C.; Sommer, T.; Pfanner, N. Purification of Saccharomycescerevisiae mitochondria devoid of microsomal and cytosolic contaminations Anal. Biochem. 2000, 287, 339-342
    • (2000) Anal. Biochem. , vol.287 , pp. 339-342
    • Meisinger, C.1    Sommer, T.2    Pfanner, N.3
  • 26
    • 0022108729 scopus 로고
    • The first twelve amino acids (less than half of the presequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolatereductase into the yeast mitochondrial matrix
    • Hurt, E. C.; Pesold-Hurt, B.; Suda, K.; Oppliger, W.; Schatz, G. The first twelve amino acids (less than half of the presequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolatereductase into the yeast mitochondrial matrix EMBO J. 1985, 4, 2061-2068
    • (1985) EMBO J. , vol.4 , pp. 2061-2068
    • Hurt, E.C.1    Pesold-Hurt, B.2    Suda, K.3    Oppliger, W.4    Schatz, G.5
  • 27
    • 84855271613 scopus 로고    scopus 로고
    • Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric response factors of peptides generated using different proteolytic enzymes
    • Couto, N.; Barber, J.; Gaskell, S. J. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric response factors of peptides generated using different proteolytic enzymes J. Mass Spectrom. 2011, 46, 1233-1240
    • (2011) J. Mass Spectrom. , vol.46 , pp. 1233-1240
    • Couto, N.1    Barber, J.2    Gaskell, S.J.3
  • 28
    • 0037462954 scopus 로고    scopus 로고
    • N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins
    • Polevoda, B.; Sherman, F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins J. Mol. Biol. 2003, 325, 595-622
    • (2003) J. Mol. Biol. , vol.325 , pp. 595-622
    • Polevoda, B.1    Sherman, F.2
  • 29
    • 0028306877 scopus 로고
    • NAT2, an essential gene encoding methionine Na-acetyltransferase in the yeast Saccharomyces cerevisiae
    • Kulkarni, M. S.; Sherman, F. NAT2, an essential gene encoding methionine Na-acetyltransferase in the yeast Saccharomyces cerevisiae J. Biol. Chem. 1994, 269, 13141-13147
    • (1994) J. Biol. Chem. , vol.269 , pp. 13141-13147
    • Kulkarni, M.S.1    Sherman, F.2
  • 30
    • 77149120798 scopus 로고    scopus 로고
    • N-Terminal acetylation of cellular proteins creates specific degradation signals
    • Hwang, C. S.; Shemorry, A.; Varshavsky, A. N-Terminal acetylation of cellular proteins creates specific degradation signals Science 2010, 327, 973-977
    • (2010) Science , vol.327 , pp. 973-977
    • Hwang, C.S.1    Shemorry, A.2    Varshavsky, A.3
  • 31
    • 0019881814 scopus 로고
    • Purification and characterization of glutathione reductase from calf liver. An improved procedure for affinity chromatography on 2′,5′- ADP-Sepharose 4B
    • Carlberg, I.; Mannervik, B. Purification and characterization of glutathione reductase from calf liver. An improved procedure for affinity chromatography on 2′,5′-ADP-Sepharose 4B Anal. Biochem. 1981, 116, 531-536
    • (1981) Anal. Biochem. , vol.116 , pp. 531-536
    • Carlberg, I.1    Mannervik, B.2
  • 32
  • 33
    • 0036682618 scopus 로고    scopus 로고
    • Controlling deuterium isotopic effect in comparative proteomics
    • Zhang, R.; Sioma, C. S.; Thompson, R. A.; Xiong, L.; Regnier, F. E. Controlling deuterium isotopic effect in comparative proteomics Anal. Chem. 2002, 74, 3662-3669
    • (2002) Anal. Chem. , vol.74 , pp. 3662-3669
    • Zhang, R.1    Sioma, C.S.2    Thompson, R.A.3    Xiong, L.4    Regnier, F.E.5
  • 34
    • 34548356772 scopus 로고    scopus 로고
    • An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics
    • Van Hoof, D.; Pinkse, M. W.; Oostwaard, D. W.; Mummery, C. L.; Heck, A. J.; Krijgsveld, J. An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics Nat. Methods 2007, 4, 677-678
    • (2007) Nat. Methods , vol.4 , pp. 677-678
    • Van Hoof, D.1    Pinkse, M.W.2    Oostwaard, D.W.3    Mummery, C.L.4    Heck, A.J.5    Krijgsveld, J.6
  • 35
    • 34247396011 scopus 로고    scopus 로고
    • A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC)
    • Ong, S.; Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC) Nat. Protoc. 2007, 1, 2650-2660
    • (2007) Nat. Protoc. , vol.1 , pp. 2650-2660
    • Ong, S.1    Mann, M.2
  • 37
    • 0017040324 scopus 로고
    • Nuclear magnetic resonance studies of D20-substrate exchange reactions catalyzed by glutamic pyruvic and glutamic oxaloacetic transaminases
    • Babu, U. M.; Johnston, R. B. Nuclear magnetic resonance studies of D20-substrate exchange reactions catalyzed by glutamic pyruvic and glutamic oxaloacetic transaminases Biochemistry 1976, 15, 5671-5678
    • (1976) Biochemistry , vol.15 , pp. 5671-5678
    • Babu, U.M.1    Johnston, R.B.2
  • 38
    • 30944438540 scopus 로고    scopus 로고
    • Positional proteomics: Selective recovery and analysis of N-terminal proteolytic peptides
    • McDonald, L.; Robertson, D. H. L.; Hurst, J. L.; Beynon, R. J. Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides Nat. Methods 2005, 2, 955-957
    • (2005) Nat. Methods , vol.2 , pp. 955-957
    • McDonald, L.1    Robertson, D.H.L.2    Hurst, J.L.3    Beynon, R.J.4
  • 39
    • 42949135961 scopus 로고    scopus 로고
    • Utility of immonium ions for assignment of ε- N -acetyllysine- containing peptides by tandem mass spectrometry
    • Morten, B.; Jensen, T.; Jenson, O. N. Utility of immonium ions for assignment of ε- N -acetyllysine-containing peptides by tandem mass spectrometry Anal. Chem. 2008, 80, 3422-3430
    • (2008) Anal. Chem. , vol.80 , pp. 3422-3430
    • Morten, B.1    Jensen, T.2    Jenson, O.N.3
  • 41
    • 0033804253 scopus 로고    scopus 로고
    • Som1, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Imp1 and Imp2
    • Jan, P. S.; Esser, K.; Pratje, E.; Michaelis, G. Som1, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Imp1 and Imp2 Mol. Gen. Genet. 2000, 263, 483-491
    • (2000) Mol. Gen. Genet. , vol.263 , pp. 483-491
    • Jan, P.S.1    Esser, K.2    Pratje, E.3    Michaelis, G.4
  • 42
    • 0036424840 scopus 로고    scopus 로고
    • Novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1
    • Esser, K.; Tursun, B.; Ingenhoven, M.; Michaelis, G.; Pratje, E. Novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1 J. Mol. Biol. 2002, 323, 835-843
    • (2002) J. Mol. Biol. , vol.323 , pp. 835-843
    • Esser, K.1    Tursun, B.2    Ingenhoven, M.3    Michaelis, G.4    Pratje, E.5
  • 45
    • 84864119697 scopus 로고    scopus 로고
    • Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state
    • Kojer, K.; Bien, M.; Gangel, H.; Morgan, B.; Dick, T. P.; Riemer, J. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state EMBO J. 2012, 31, 3169-3182
    • (2012) EMBO J. , vol.31 , pp. 3169-3182
    • Kojer, K.1    Bien, M.2    Gangel, H.3    Morgan, B.4    Dick, T.P.5    Riemer, J.6
  • 46
    • 57649183232 scopus 로고    scopus 로고
    • The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix
    • Hu, J.; Dong, L.; Outten, C. E. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix J. Biol. Chem. 2008, 283, 29126-29134
    • (2008) J. Biol. Chem. , vol.283 , pp. 29126-29134
    • Hu, J.1    Dong, L.2    Outten, C.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.