-
1
-
-
0030004354
-
Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
-
Grant, C. M.; MacIver, F. H.; Dawes, I. W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae Curr. Genet. 1996, 29, 511-515
-
(1996)
Curr. Genet.
, vol.29
, pp. 511-515
-
-
Grant, C.M.1
MacIver, F.H.2
Dawes, I.W.3
-
2
-
-
0032439653
-
Oxidative stress responses of the yeast Saccharomyces cerevisiae
-
Jamieson, D. J. Oxidative stress responses of the yeast Saccharomyces cerevisiae Yeast. 1998, 14, 1511-1527
-
(1998)
Yeast.
, vol.14
, pp. 1511-1527
-
-
Jamieson, D.J.1
-
3
-
-
0036052119
-
An overview on glutathione in Saccharomyces versus non-conventional yeasts
-
Penninckx, M. J. An overview on glutathione in Saccharomyces versus non-conventional yeasts FEMS Yeast Res. 2002, 2, 295-305
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 295-305
-
-
Penninckx, M.J.1
-
4
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy, M. P. How mitochondria produce reactive oxygen species Biochem. J. 2009, 417, 1-13
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
5
-
-
33748132549
-
Redox regulatory mechanisms in cellular stress response
-
Fedoroff, N. Redox regulatory mechanisms in cellular stress response Ann. Bot. 2006, 98, 289-300
-
(2006)
Ann. Bot.
, vol.98
, pp. 289-300
-
-
Fedoroff, N.1
-
6
-
-
0035131144
-
Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
-
Grant, C. M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions Mol. Microbiol. 2001, 39, 533-541
-
(2001)
Mol. Microbiol.
, vol.39
, pp. 533-541
-
-
Grant, C.M.1
-
7
-
-
0028960573
-
Isolation, characterization and overexpression of the yeast gene, GLR1 encoding glutathione reductase
-
Collinson, L. P.; Dawes, I. W. Isolation, characterization and overexpression of the yeast gene, GLR1 encoding glutathione reductase Gene 1995, 156, 123-127
-
(1995)
Gene
, vol.156
, pp. 123-127
-
-
Collinson, L.P.1
Dawes, I.W.2
-
8
-
-
1542319976
-
Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase
-
Outten, C. E.; Culotta, V. C. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase J. Biol. Chem. 2004, 279, 7785-7791
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 7785-7791
-
-
Outten, C.E.1
Culotta, V.C.2
-
9
-
-
0036631379
-
How mitochondria import hydrophilic and hydrophobic proteins
-
Chacinska, A.; Pfanner, N.; Meisinger, C. How mitochondria import hydrophilic and hydrophobic proteins Trends Cell Biol. 2002, 12, 299-303
-
(2002)
Trends Cell Biol.
, vol.12
, pp. 299-303
-
-
Chacinska, A.1
Pfanner, N.2
Meisinger, C.3
-
10
-
-
0037250848
-
Import of nuclear-encoded proteins into mitochondria
-
Stojanovski, D.; Johnston, A. J.; Streimann, I.; Hoogenraad, N. J.; Ryan, M. T. Import of nuclear-encoded proteins into mitochondria Exp. Physiol. 2003, 88, 57-64
-
(2003)
Exp. Physiol.
, vol.88
, pp. 57-64
-
-
Stojanovski, D.1
Johnston, A.J.2
Streimann, I.3
Hoogenraad, N.J.4
Ryan, M.T.5
-
11
-
-
34848823742
-
Mitochondrial protein-import machinery: Correlating structure with function
-
Baker, M.; Frazier, J. A. E.; Gulbis, J. M.; Ryan, M. T. Mitochondrial protein-import machinery: correlating structure with function Trends Cell Biol. 2007, 17, 456-464
-
(2007)
Trends Cell Biol.
, vol.17
, pp. 456-464
-
-
Baker, M.1
Frazier, J.A.E.2
Gulbis, J.M.3
Ryan, M.T.4
-
12
-
-
34147176512
-
Import of proteins into mitochondria
-
Stojanovski, D.; Pfanner, D.; Wiedemann, N. N. Import of proteins into mitochondria Methods Cell Biol. 2007, 80, 783-806
-
(2007)
Methods Cell Biol.
, vol.80
, pp. 783-806
-
-
Stojanovski, D.1
Pfanner, D.2
Wiedemann, N.N.3
-
13
-
-
0026471632
-
HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: Mutations alter the specificity of compartmentation
-
Chiu, M. I.; Mason, T. L.; Fink, G. R. HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: Mutations alter the specificity of compartmentation Genetics 1992, 132, 987-1001
-
(1992)
Genetics
, vol.132
, pp. 987-1001
-
-
Chiu, M.I.1
Mason, T.L.2
Fink, G.R.3
-
14
-
-
0023902156
-
The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases
-
Chatton, B.; Walter, P.; Ebel, J. P.; Lacroute, F.; Fasiolo, F. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases J. Biol. Chem. 1988, 263, 52-57
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 52-57
-
-
Chatton, B.1
Walter, P.2
Ebel, J.P.3
Lacroute, F.4
Fasiolo, F.5
-
15
-
-
0034655980
-
Disruption of cytoplasmic and mitochondrial folylpolyglutamate synthetase activity in Saccharomyces cerevisiae
-
DeSousa, L.; Shen, Y. A.; Bognar, L. Disruption of cytoplasmic and mitochondrial folylpolyglutamate synthetase activity in Saccharomyces cerevisiae Arch. Biochem. Biophys. 2000, 376, 299-312
-
(2000)
Arch. Biochem. Biophys.
, vol.376
, pp. 299-312
-
-
Desousa, L.1
Shen, Y.A.2
Bognar, L.3
-
16
-
-
0033533721
-
The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase i
-
Willer, M.; Rainey, M.; Pullen, T.; Stirling, C. J. The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase I Curr. Biol. 1999, 9, 1085-1094
-
(1999)
Curr. Biol.
, vol.9
, pp. 1085-1094
-
-
Willer, M.1
Rainey, M.2
Pullen, T.3
Stirling, C.J.4
-
17
-
-
0025107694
-
Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes
-
Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 8301-8305
-
(1990)
Proc. Natl. Acad. Sci. U.S.A.
, vol.87
, pp. 8301-8305
-
-
Kozak, M.1
-
18
-
-
0037121050
-
Pushing the limits of the scanning mechanism for initiation of translation
-
Kozak, M. Pushing the limits of the scanning mechanism for initiation of translation Gene 2003, 299, 1-34
-
(2003)
Gene
, vol.299
, pp. 1-34
-
-
Kozak, M.1
-
19
-
-
9244222676
-
How strong is the case for regulation of the initiation step of translation by elements at the 3′ end of eukaryotic mRNAs?
-
Kozak, M. How strong is the case for regulation of the initiation step of translation by elements at the 3′ end of eukaryotic mRNAs? Gene 2004, 343, 41-54
-
(2004)
Gene
, vol.343
, pp. 41-54
-
-
Kozak, M.1
-
20
-
-
0023663451
-
Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae mRNAs
-
Hamilton, R.; Watanabe, C. K.; Boer, H. A. Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae mRNAs Nucleic Acids Res. 1987, 15, 3581-3593
-
(1987)
Nucleic Acids Res.
, vol.15
, pp. 3581-3593
-
-
Hamilton, R.1
Watanabe, C.K.2
Boer, H.A.3
-
21
-
-
80053056359
-
Protein production in Saccharomyces cerevisiae for systems biology studies
-
Malys, N.; Wishart, J. A.; Oliver, S. G.; McCarthy, J. E. G. Protein production in Saccharomyces cerevisiae for systems biology studies Methods Enzymol. 2011, 500, 197-212
-
(2011)
Methods Enzymol.
, vol.500
, pp. 197-212
-
-
Malys, N.1
Wishart, J.A.2
Oliver, S.G.3
McCarthy, J.E.G.4
-
22
-
-
0020479807
-
2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria
-
2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria J. Biol. Chem. 1982, 257, 13028-13033
-
(1982)
J. Biol. Chem.
, vol.257
, pp. 13028-13033
-
-
Daum, G.1
Böhni, P.C.2
Schatz, G.3
-
23
-
-
0028800976
-
Isolation of highly purified mitochondria from Saccharomyces cerevisiae
-
Glick, B. S.; Pon, L. A. Isolation of highly purified mitochondria from Saccharomyces cerevisiae Methods Enzymol. 1995, 260, 213-223
-
(1995)
Methods Enzymol.
, vol.260
, pp. 213-223
-
-
Glick, B.S.1
Pon, L.A.2
-
24
-
-
0034672334
-
Purification of Saccharomycescerevisiae mitochondria devoid of microsomal and cytosolic contaminations
-
Meisinger, C.; Sommer, T.; Pfanner, N. Purification of Saccharomycescerevisiae mitochondria devoid of microsomal and cytosolic contaminations Anal. Biochem. 2000, 287, 339-342
-
(2000)
Anal. Biochem.
, vol.287
, pp. 339-342
-
-
Meisinger, C.1
Sommer, T.2
Pfanner, N.3
-
25
-
-
33644797331
-
Isolation of yeast mitochondria
-
Meisinger, C.; Pfanner, N.; Truscott, K. N. Isolation of yeast mitochondria Methods Mol. Biol. 2005, 313, 33-39
-
(2005)
Methods Mol. Biol.
, vol.313
, pp. 33-39
-
-
Meisinger, C.1
Pfanner, N.2
Truscott, K.N.3
-
26
-
-
0022108729
-
The first twelve amino acids (less than half of the presequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolatereductase into the yeast mitochondrial matrix
-
Hurt, E. C.; Pesold-Hurt, B.; Suda, K.; Oppliger, W.; Schatz, G. The first twelve amino acids (less than half of the presequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolatereductase into the yeast mitochondrial matrix EMBO J. 1985, 4, 2061-2068
-
(1985)
EMBO J.
, vol.4
, pp. 2061-2068
-
-
Hurt, E.C.1
Pesold-Hurt, B.2
Suda, K.3
Oppliger, W.4
Schatz, G.5
-
27
-
-
84855271613
-
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric response factors of peptides generated using different proteolytic enzymes
-
Couto, N.; Barber, J.; Gaskell, S. J. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric response factors of peptides generated using different proteolytic enzymes J. Mass Spectrom. 2011, 46, 1233-1240
-
(2011)
J. Mass Spectrom.
, vol.46
, pp. 1233-1240
-
-
Couto, N.1
Barber, J.2
Gaskell, S.J.3
-
28
-
-
0037462954
-
N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins
-
Polevoda, B.; Sherman, F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins J. Mol. Biol. 2003, 325, 595-622
-
(2003)
J. Mol. Biol.
, vol.325
, pp. 595-622
-
-
Polevoda, B.1
Sherman, F.2
-
29
-
-
0028306877
-
NAT2, an essential gene encoding methionine Na-acetyltransferase in the yeast Saccharomyces cerevisiae
-
Kulkarni, M. S.; Sherman, F. NAT2, an essential gene encoding methionine Na-acetyltransferase in the yeast Saccharomyces cerevisiae J. Biol. Chem. 1994, 269, 13141-13147
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 13141-13147
-
-
Kulkarni, M.S.1
Sherman, F.2
-
30
-
-
77149120798
-
N-Terminal acetylation of cellular proteins creates specific degradation signals
-
Hwang, C. S.; Shemorry, A.; Varshavsky, A. N-Terminal acetylation of cellular proteins creates specific degradation signals Science 2010, 327, 973-977
-
(2010)
Science
, vol.327
, pp. 973-977
-
-
Hwang, C.S.1
Shemorry, A.2
Varshavsky, A.3
-
31
-
-
0019881814
-
Purification and characterization of glutathione reductase from calf liver. An improved procedure for affinity chromatography on 2′,5′- ADP-Sepharose 4B
-
Carlberg, I.; Mannervik, B. Purification and characterization of glutathione reductase from calf liver. An improved procedure for affinity chromatography on 2′,5′-ADP-Sepharose 4B Anal. Biochem. 1981, 116, 531-536
-
(1981)
Anal. Biochem.
, vol.116
, pp. 531-536
-
-
Carlberg, I.1
Mannervik, B.2
-
32
-
-
0034841844
-
The tandem affinity purification (TAP) method: A general procedure of protein complex purification
-
Puig, O.; Caspary, F.; Rigaut, G.; Rutz, B.; Bouveret, E.; Bragado-Nilsson, E.; Wilm, M.; Seraphin, B. The tandem affinity purification (TAP) method: A general procedure of protein complex purification Methods 2001, 24, 218-229
-
(2001)
Methods
, vol.24
, pp. 218-229
-
-
Puig, O.1
Caspary, F.2
Rigaut, G.3
Rutz, B.4
Bouveret, E.5
Bragado-Nilsson, E.6
Wilm, M.7
Seraphin, B.8
-
33
-
-
0036682618
-
Controlling deuterium isotopic effect in comparative proteomics
-
Zhang, R.; Sioma, C. S.; Thompson, R. A.; Xiong, L.; Regnier, F. E. Controlling deuterium isotopic effect in comparative proteomics Anal. Chem. 2002, 74, 3662-3669
-
(2002)
Anal. Chem.
, vol.74
, pp. 3662-3669
-
-
Zhang, R.1
Sioma, C.S.2
Thompson, R.A.3
Xiong, L.4
Regnier, F.E.5
-
34
-
-
34548356772
-
An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics
-
Van Hoof, D.; Pinkse, M. W.; Oostwaard, D. W.; Mummery, C. L.; Heck, A. J.; Krijgsveld, J. An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics Nat. Methods 2007, 4, 677-678
-
(2007)
Nat. Methods
, vol.4
, pp. 677-678
-
-
Van Hoof, D.1
Pinkse, M.W.2
Oostwaard, D.W.3
Mummery, C.L.4
Heck, A.J.5
Krijgsveld, J.6
-
35
-
-
34247396011
-
A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC)
-
Ong, S.; Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC) Nat. Protoc. 2007, 1, 2650-2660
-
(2007)
Nat. Protoc.
, vol.1
, pp. 2650-2660
-
-
Ong, S.1
Mann, M.2
-
36
-
-
0036692065
-
Dynamics of protein turnover, a missing dimension in proteomics
-
Pratt, J. M.; Petty, J.; Riba-Garcia, I.; Roberstson, D. H.; Gaskell, S. J.; Oliver, S. G.; Beynon, R. J. Dynamics of protein turnover, a missing dimension in proteomics Mol. Cel. Proteomics 2002, 1, 579-591
-
(2002)
Mol. Cel. Proteomics
, vol.1
, pp. 579-591
-
-
Pratt, J.M.1
Petty, J.2
Riba-Garcia, I.3
Roberstson, D.H.4
Gaskell, S.J.5
Oliver, S.G.6
Beynon, R.J.7
-
37
-
-
0017040324
-
Nuclear magnetic resonance studies of D20-substrate exchange reactions catalyzed by glutamic pyruvic and glutamic oxaloacetic transaminases
-
Babu, U. M.; Johnston, R. B. Nuclear magnetic resonance studies of D20-substrate exchange reactions catalyzed by glutamic pyruvic and glutamic oxaloacetic transaminases Biochemistry 1976, 15, 5671-5678
-
(1976)
Biochemistry
, vol.15
, pp. 5671-5678
-
-
Babu, U.M.1
Johnston, R.B.2
-
38
-
-
30944438540
-
Positional proteomics: Selective recovery and analysis of N-terminal proteolytic peptides
-
McDonald, L.; Robertson, D. H. L.; Hurst, J. L.; Beynon, R. J. Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides Nat. Methods 2005, 2, 955-957
-
(2005)
Nat. Methods
, vol.2
, pp. 955-957
-
-
McDonald, L.1
Robertson, D.H.L.2
Hurst, J.L.3
Beynon, R.J.4
-
39
-
-
42949135961
-
Utility of immonium ions for assignment of ε- N -acetyllysine- containing peptides by tandem mass spectrometry
-
Morten, B.; Jensen, T.; Jenson, O. N. Utility of immonium ions for assignment of ε- N -acetyllysine-containing peptides by tandem mass spectrometry Anal. Chem. 2008, 80, 3422-3430
-
(2008)
Anal. Chem.
, vol.80
, pp. 3422-3430
-
-
Morten, B.1
Jensen, T.2
Jenson, O.N.3
-
40
-
-
0037009089
-
Mitochondrial processing peptidases
-
Gakh, O.; Cavadini, P.; Isaya, G. Mitochondrial processing peptidases Biochim. Biophys. Acta 2002, 1592, 63-77
-
(2002)
Biochim. Biophys. Acta
, vol.1592
, pp. 63-77
-
-
Gakh, O.1
Cavadini, P.2
Isaya, G.3
-
41
-
-
0033804253
-
Som1, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Imp1 and Imp2
-
Jan, P. S.; Esser, K.; Pratje, E.; Michaelis, G. Som1, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Imp1 and Imp2 Mol. Gen. Genet. 2000, 263, 483-491
-
(2000)
Mol. Gen. Genet.
, vol.263
, pp. 483-491
-
-
Jan, P.S.1
Esser, K.2
Pratje, E.3
Michaelis, G.4
-
42
-
-
0036424840
-
Novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1
-
Esser, K.; Tursun, B.; Ingenhoven, M.; Michaelis, G.; Pratje, E. Novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1 J. Mol. Biol. 2002, 323, 835-843
-
(2002)
J. Mol. Biol.
, vol.323
, pp. 835-843
-
-
Esser, K.1
Tursun, B.2
Ingenhoven, M.3
Michaelis, G.4
Pratje, E.5
-
43
-
-
70349840621
-
Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability
-
Vögtle, F. N.; Wortelkamp, S.; Zahedi, R. P.; Becker, D.; Leidhold, C.; Gevaert, K.; Kellermann, J.; Voos, W.; Sickmann, A.; Pfanner, N.; Meisinger, C. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability Cell 2009, 139, 428-439
-
(2009)
Cell
, vol.139
, pp. 428-439
-
-
Vögtle, F.N.1
Wortelkamp, S.2
Zahedi, R.P.3
Becker, D.4
Leidhold, C.5
Gevaert, K.6
Kellermann, J.7
Voos, W.8
Sickmann, A.9
Pfanner, N.10
Meisinger, C.11
-
44
-
-
84864293849
-
Processing of mitochondrial presequences
-
Mossmann, D.; Meisinger, C.; Vögtle, F. N. Processing of mitochondrial presequences Biochim. Biophys. Acta 2012, 1819, 1098-1106
-
(2012)
Biochim. Biophys. Acta
, vol.1819
, pp. 1098-1106
-
-
Mossmann, D.1
Meisinger, C.2
Vögtle, F.N.3
-
45
-
-
84864119697
-
Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state
-
Kojer, K.; Bien, M.; Gangel, H.; Morgan, B.; Dick, T. P.; Riemer, J. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state EMBO J. 2012, 31, 3169-3182
-
(2012)
EMBO J.
, vol.31
, pp. 3169-3182
-
-
Kojer, K.1
Bien, M.2
Gangel, H.3
Morgan, B.4
Dick, T.P.5
Riemer, J.6
-
46
-
-
57649183232
-
The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix
-
Hu, J.; Dong, L.; Outten, C. E. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix J. Biol. Chem. 2008, 283, 29126-29134
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 29126-29134
-
-
Hu, J.1
Dong, L.2
Outten, C.E.3
|