메뉴 건너뛰기




Volumn 40, Issue 15, 2013, Pages 6185-6194

Expert system for clustering prokaryotic species by their metabolic features

Author keywords

Clustering; Clustering validity indices; Expert system; Metabolism; Prokaryotic species; Self organizing Maps

Indexed keywords

CLUSTERING; CLUSTERING VALIDITY INDEX; FUNCTIONAL PROPERTIES; HIER-ARCHICAL CLUSTERING; ITERATIVE PROCESS; METABOLIC CHARACTERISTICS; PROKARYOTIC SPECIES; SELF-ORGANIZING MAP (SOM);

EID: 84879060032     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.05.013     Document Type: Article
Times cited : (5)

References (20)
  • 1
    • 70449717295 scopus 로고    scopus 로고
    • Analysis of genomic signatures in prokaryotes using multinomial regression and hierarchical clustering
    • http://www.ncbi.nlm.nih.gov/pubmed/19845945
    • J. Bohlin, E. Skjerve, and D.W. Ussery Analysis of genomic signatures in prokaryotes using multinomial regression and hierarchical clustering BMC Genomics 10 1 2009 487 http://www.ncbi.nlm.nih.gov/pubmed/19845945
    • (2009) BMC Genomics , vol.10 , Issue.1 , pp. 487
    • Bohlin, J.1    Skjerve, E.2    Ussery, D.W.3
  • 2
    • 33748519234 scopus 로고    scopus 로고
    • Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology. Genome informatics
    • http://www.ncbi.nlm.nih.gov/pubmed/16901088
    • J.C. Clemente, K. Satou, and G. Valiente Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology. Genome informatics International Conference on Genome Informatics 16 2 2005 45 55 http://www.ncbi.nlm.nih.gov/pubmed/16901088
    • (2005) International Conference on Genome Informatics , vol.16 , Issue.2 , pp. 45-55
    • Clemente, J.C.1    Satou, K.2    Valiente, G.3
  • 4
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • R.O. Duda, P.E. Hart, D.G. Stork, Wiley 10.1038/npp.2011.9
    • R.O. Duda, P.E. Hart, and D.G. Stork Pattern Classification R.O. Duda, P.E. Hart, D.G. Stork, Neuropsychopharmacology 2 2001 Wiley 654 10.1038/npp.2011.9
    • (2001) Neuropsychopharmacology , vol.2 , pp. 654
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 7
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • DOI 10.1093/bioinformatics/bti517
    • J. Handl, J. Knowles, and D.B. Kell Computational cluster validation in post-genomic data analysis Bioinformatics (Oxford, England) 21 15 2005 3201 3212 10.1093/bioinformatics/bti517 (Pubitemid 41418432)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 8
    • 4043070854 scopus 로고    scopus 로고
    • Phylogenetic analysis based on genome-scale metabolic pathway reaction content
    • S.H. Hong, T.Y. Kim, and S.Y. Lee Phylogenetic analysis based on genome-scale metabolic pathway reaction content Applied Microbiology and Biotechnology 65 2 2004 203 210 10.1007/s00253-004-1641-3 (Pubitemid 39062483)
    • (2004) Applied Microbiology and Biotechnology , vol.65 , Issue.2 , pp. 203-210
    • Hong, S.H.1    Kim, T.Y.2    Lee, S.Y.3
  • 11
    • 0037805576 scopus 로고    scopus 로고
    • The KEGG database
    • discussion 101-103, 119-128, 244-252
    • Kanehisa, M. (2002). The KEGG database. Novartis Foundation Symposium, 247, 91-101; discussion 101-103, 119-128, 244-252. Retrieved from < http://www.ncbi.nlm.nih.gov/pubmed/12539951 >.
    • (2002) Novartis Foundation Symposium , vol.247 , pp. 91-101
    • Kanehisa, M.1
  • 12
    • 84861990785 scopus 로고    scopus 로고
    • Predicting bacterial community assemblages using an artificial neural network approach
    • 10.1038/nmeth.1975
    • P.E. Larsen, D. Field, and J.A. Gilbert Predicting bacterial community assemblages using an artificial neural network approach Nature Methods 9 6 2012 621 625 10.1038/nmeth.1975
    • (2012) Nature Methods , vol.9 , Issue.6 , pp. 621-625
    • Larsen, P.E.1    Field, D.2    Gilbert, J.A.3
  • 13
    • 84860219745 scopus 로고    scopus 로고
    • Metabolic classification of microbial genomes using functional probes
    • 10.1186/1471-2164-13-157
    • C.-C. Lee, W.-C. Lo, S.-M. Lai, Y.-P.P. Chen, C.Y. Tang, and P.-C. Lyu Metabolic classification of microbial genomes using functional probes BMC Genomics 13 1 2012 157 10.1186/1471-2164-13-157
    • (2012) BMC Genomics , vol.13 , Issue.1 , pp. 157
    • Lee, C.-C.1    Lo, W.-C.2    Lai, S.-M.3    Chen, Y.-P.P.4    Tang, C.Y.5    Lyu, P.-C.6
  • 15
    • 0037442528 scopus 로고    scopus 로고
    • Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters
    • DOI 10.1016/S0304-3800(02)00258-2, PII S0304380002002582
    • Y.-S. Park, R. Céréghino, A. Compin, and S. Lek Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters Ecological Modelling 160 3 2003 265 280 10.1016/S0304-3800(02)00258-2 (Pubitemid 36251041)
    • (2003) Ecological Modelling , vol.160 , Issue.3 , pp. 265-280
    • Park, Y.-S.1    Cereghino, R.2    Compin, A.3    Lek, S.4
  • 16
    • 0037075063 scopus 로고    scopus 로고
    • Mining the National Cancer Institute's tumor-screening database: Identification of compounds with similar cellular activities
    • DOI 10.1021/jm010385b
    • A.A. Rabow, R.H. Shoemaker, E.A. Sausville, and D.G. Covell Mining the national cancer institute's tumor-screening database: Identification of compounds with similar cellular activities Journal of Medicinal Chemistry 45 4 2002 818 840 10.1021/jm010385b (Pubitemid 34176791)
    • (2002) Journal of Medicinal Chemistry , vol.45 , Issue.4 , pp. 818-840
    • Rabow, A.A.1    Shoemaker, R.H.2    Sausville, E.A.3    Covell, D.G.4
  • 17
    • 84879039295 scopus 로고    scopus 로고
    • Automatic extraction of clusters from hierarchical clustering representations
    • Sander, J., Qin, X., Lu, Z., Niu, N., & Kovarsky, A. (2003). Automatic extraction of clusters from hierarchical clustering representations. Transformation, 1-12. Retrieved from http://www.springerlink.com/index/ he3wv27nyj5ldh3y.pdf.
    • (2003) Transformation , pp. 1-12
    • Sander, J.1    Qin, X.2    Lu, Z.3    Niu, N.4    Kovarsky, A.5
  • 18
    • 84867880432 scopus 로고    scopus 로고
    • Data mining over biological datasets: An integrated approach based on computational intelligence
    • 10.1109/MCI.2012.2215122
    • G. Stegmayer, M. Gerard, and D. Milone Data mining over biological datasets: An integrated approach based on computational intelligence IEEE Computational Intelligence Magazine 7 4 2012 22 34 10.1109/MCI.2012.2215122
    • (2012) IEEE Computational Intelligence Magazine , vol.7 , Issue.4 , pp. 22-34
    • Stegmayer, G.1    Gerard, M.2    Milone, D.3
  • 19
    • 40349087151 scopus 로고    scopus 로고
    • Predicting prokaryotic ecological niches using genome sequence analysis
    • DOI 10.1371/journal.pone.0000743
    • Suen, G., Goldman, B. S., & Welch, R. D. (2007). Predicting prokaryotic ecological niches using genome sequence analysis. In G. Butler (Ed.), PloS one 2(8), e743. < http://dx.doi.org/10.1371/journal.pone.0000743 >. (Pubitemid 351338869)
    • (2007) PLoS ONE , vol.2 , Issue.8
    • Suen, G.1    Goldman, B.S.2    Welch, R.D.3
  • 20
    • 84867685756 scopus 로고    scopus 로고
    • Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates
    • Szaleniec, M. (2012). Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates. Pharmacological reports: PR, 64(4), pp. 761-81. Retrieved from < http://www.ncbi.nlm.nih.gov/pubmed/23087130 >.
    • (2012) Pharmacological Reports: PR , vol.64 , Issue.4 , pp. 761-781
    • Szaleniec, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.