메뉴 건너뛰기




Volumn 64, Issue 7, 2013, Pages 1060-1070

On the suitability of resampling techniques for the class imbalance problem in credit scoring

Author keywords

class imbalance; credit scoring; logistic regression; resampling; support vector machine

Indexed keywords

SUPPORT VECTOR MACHINES;

EID: 84878929285     PISSN: 01605682     EISSN: 14769360     Source Type: Journal    
DOI: 10.1057/jors.2012.120     Document Type: Article
Times cited : (133)

References (46)
  • 1
    • 85104787192 scopus 로고    scopus 로고
    • Credit scoring, statistical techniques and evaluation criteria: A review of the literature
    • Abdou HA and Pointon J (2011). Credit scoring, statistical techniques and evaluation criteria: A review of the literature. Intelligent Systems in Accounting, Finance & Management: 18(2-3): 59-88
    • (2011) Intelligent Systems in Accounting Finance & Management , vol.18 , Issue.2-3 , pp. 59-88
    • Abdou, H.A.1    Pointon, J.2
  • 3
    • 55549103698 scopus 로고    scopus 로고
    • KEEL: A software tool to assess evolutionary algorithms for data mining problems
    • Alcalá-Fdez J et al (2009). KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Computing 13(3): 307-318
    • (2009) Soft Computing , vol.13 , Issue.3 , pp. 307-318
    • Alcalá-Fdez, J.1
  • 7
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista GEAPA, Prati RC and Monard MC (2004). A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations Newsletter 6(1): 20-29
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 9
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • Brown I and Mues C (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications 39(3): 3446-3453
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 12
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Chawla NV, Japkowicz N and Kotcz A (2004). Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explorations Newsletter 6(1): 1-6
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 14
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7(1): 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , Issue.1 , pp. 1-30
    • Demšar, J.1
  • 16
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • García S, Fernández A, Luengo J and Herrera F (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10): 2044-2064
    • (2010) Information Sciences , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 17
    • 24144464528 scopus 로고    scopus 로고
    • Good practice in retail credit scorecard assessment
    • Hand DJ (2005). Good practice in retail credit scorecard assessment. Journal of the Operational Research Society 56(9): 1109-1117
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.9 , pp. 1109-1117
    • Hand, D.J.1
  • 18
    • 0037410687 scopus 로고    scopus 로고
    • Choosing k for two-class nearest neighbour classifiers with unbalanced classes
    • Hand DJ and Vinciotti V (2003). Choosing k for two-class nearest neighbour classifiers with unbalanced classes. Pattern Recognition Letters 24(9-10): 1555-1562
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1555-1562
    • Hand, D.J.1    Vinciotti, V.2
  • 19
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • IEEE
    • Hart PE (1968). The condensed nearest neighbor rule. IEEE Transactions on Information Theory 14(3): 505-516
    • (1968) Transactions on Information Theory , vol.14 , Issue.3 , pp. 505-516
    • Hart, P.E.1
  • 21
    • 84863050617 scopus 로고    scopus 로고
    • Construction of a k-nearestneighbour credit-scoring system
    • Henley WE and Hand DJ (1997). Construction of a k-nearestneighbour credit-scoring system. IMA Journal of Management Mathematics 8(4): 305-321
    • (1997) IMA Journal of Management Mathematics , vol.8 , Issue.4 , pp. 305-321
    • Henley, W.E.1    Hand, D.J.2
  • 23
    • 33646142788 scopus 로고    scopus 로고
    • Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
    • Huang Y-M, Hung C-M and Jiau HC (2006). Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem. Nonlinear Analysis: Real World Applications 7(4): 720-747
    • (2006) Nonlinear Analysis: Real World Applications , vol.7 , Issue.4 , pp. 720-747
    • Huang, Y.-M.1    Hung, C.-M.2    Jiau, H.C.3
  • 24
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Huang Z, Chen H, Hsu C-J, Chen W-H and Wu S (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems 37(4): 543-558
    • (2004) Decision Support Systems , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.-J.3    Chen, W.-H.4    Wu, S.5
  • 25
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz N and Stephen S (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis 6(5): 429-449
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 29
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • Lessmann S, Baesens B,Mues C and Pietsch S (2008). Benchmarking classification models for software defect prediction: A proposed framework and novel findings. IEEE Transactions on Software Engineering 34(4): 485-496
    • (2008) IEEE Transactions on Software Engineering , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 31
    • 84874613460 scopus 로고    scopus 로고
    • Estimating probabilities of default for low default portfolios
    • In: Engelmann B and Rauhmeier R (eds Springer: Berlin
    • Pluto K and Tasche D (2006). Estimating probabilities of default for low default portfolios. In: Engelmann B and Rauhmeier R (eds). The Basel II Risk Parameters: Estimation, Validation, and Stress Testing. Springer: Berlin, pp 75-101
    • (2006) Basel II Risk Parameters: Estimation, Validation, and Stress Testing , pp. 75-101
    • Pluto, K.1    Tasche, D.2
  • 33
    • 84859426730 scopus 로고    scopus 로고
    • A comparison between statistical and data mining methods for credit scoring in case of limited available data
    • Edinburgh, U.K.
    • Sabzevari H, Soleymani M and Noorbakhsh E (2007 A comparison between statistical and data mining methods for credit scoring in case of limited available data. In: Proceedings of the 3rd CRC Credit Scoring Conference, Edinburgh, U.K.
    • (2007) Proceedings of the 3rd CRC Credit Scoring Conference
    • Sabzevari, H.1    Soleymani, M.2    Noorbakhsh, E.3
  • 34
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • Sokolova M and Lapalme G (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management 45(4): 427-437
    • (2009) Information Processing & Management , vol.45 , Issue.4 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 39
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • Wang G, Hao J, Ma J and Jiang H (2011). A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications 38(1): 223-230
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 223-230
    • Wang, G.1    Hao, J.2    Ma, J.3    Jiang, H.4
  • 40
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbour rules using edited data
    • Wilson DL (1972). Asymptotic properties of nearest neighbour rules using edited data. IEEE Transactions on Systems, Man and Cybernetics 2(3): 408-421
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 41
    • 33845671851 scopus 로고    scopus 로고
    • A comparative study of data mining methods in consumer loans credit scoring management
    • Xiao W, Zhao Q and Fei Q (2006). A comparative study of data mining methods in consumer loans credit scoring management. Journal of Systems Science and Systems Engineering 15(4): 419-435
    • (2006) Journal of Systems Science and Systems Engineering , vol.15 , Issue.4 , pp. 419-435
    • Xiao, W.1    Zhao, Q.2    Fei, Q.3
  • 45
    • 33748947459 scopus 로고    scopus 로고
    • Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset
    • In: Thoma M and Morari M (eds Springer: Berlin
    • Yen S-J and Lee Y-S (2006). Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset. In: Thoma M and Morari M (eds). Intelligent Control and Automation, Lecture Notes in Control and Information Sciences. Vol. 344 Springer: Berlin, pp 731-740
    • (2006) Intelligent Control and Automation, Lecture Notes in Control and Information Sciences , vol.344 , pp. 731-740
    • Yen, S.-J.1    Lee, Y.-S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.