메뉴 건너뛰기




Volumn 39, Issue 1, 2013, Pages 14-27

Vision-based rock-type classification of limestone using multi-class support vector machine

Author keywords

Feature selection; Genetic algorithm; Image classification; Support vector machine

Indexed keywords

CLASSIFICATION METHODS; COMPARATIVE STUDIES; LIMESTONE MINES; MULTI-CLASS SUPPORT VECTOR MACHINES; NEURAL NETWORK MODEL; OVERALL ACCURACIES; STRATIFIED RANDOM SAMPLING; TEXTURAL FEATURE;

EID: 84878892750     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-012-0391-7     Document Type: Article
Times cited : (82)

References (54)
  • 1
    • 33947588108 scopus 로고    scopus 로고
    • Utilization of optical image analysis and automatic texture classification for iron ore particle characterization
    • 10.1016/j.mineng.2006.12.005
    • Donskoi E, Suthers S, Fradd S, Young J, Campbell J, Raynlyn T, Clout J (2007) Utilization of optical image analysis and automatic texture classification for iron ore particle characterization. Miner Eng 20(5):461-471
    • (2007) Miner Eng , vol.20 , Issue.5 , pp. 461-471
    • Donskoi, E.1    Suthers, S.2    Fradd, S.3    Young, J.4    Campbell, J.5    Raynlyn, T.6    Clout, J.7
  • 2
  • 3
    • 84861810998 scopus 로고    scopus 로고
    • New prediction models for mean particle size in rock blast fragmentation
    • 10.1007/s10706-012-9496-3
    • Kulatilake PHSW, Hudaverdi T, Wu Q (2012) New prediction models for mean particle size in rock blast fragmentation. Geotech Geolog Eng 30(3):665-684
    • (2012) Geotech Geolog Eng , vol.30 , Issue.3 , pp. 665-684
    • Kulatilake, P.1    Hudaverdi, T.2    Wu, Q.3
  • 4
    • 77952875936 scopus 로고    scopus 로고
    • Textural identification of basaltic rock mass using image processing and neural network
    • 1183.86011 10.1007/s10596-009-9154-x
    • Singh N, Singh TN, Tiwary A, Sarkar KM (2010) Textural identification of basaltic rock mass using image processing and neural network. Comput Geosci 14(2):301-310
    • (2010) Comput Geosci , vol.14 , Issue.2 , pp. 301-310
    • Singh, N.1    Singh, T.N.2    Tiwary, A.3    Sarkar, K.M.4
  • 5
    • 34548534767 scopus 로고    scopus 로고
    • A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts
    • 10.1016/j.mineng.2007.04.009
    • Tessier J, Duchesne C, Bartolacci G (2007) A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts. Miner Eng 20(12):1129-1144
    • (2007) Miner Eng , vol.20 , Issue.12 , pp. 1129-1144
    • Tessier, J.1    Duchesne, C.2    Bartolacci, G.3
  • 8
    • 77953293567 scopus 로고    scopus 로고
    • Lithological composition and ore grindability sensors, based on image analysis
    • Rome
    • Casali G, Vallebuona C, Pérez G, Vargas R (2000) Lithological composition and ore grindability sensors, based on image analysis. In: Proc. of the XXI IMPC, Rome, p A1(9-16)
    • (2000) Proc. of the XXI IMPC , pp. 19-16
    • Casali, G.1    Vallebuona, C.2    Pérez, G.3    Vargas, R.4
  • 9
    • 27744581662 scopus 로고    scopus 로고
    • Application of image processing and radial basis neural network techniques for ore sorting and ore classification
    • 10.1016/j.mineng.2005.03.003
    • Singh V, Rao SM (2005) Application of image processing and radial basis neural network techniques for ore sorting and ore classification. Miner Eng 18:1412-1420
    • (2005) Miner Eng , vol.18 , pp. 1412-1420
    • Singh, V.1    Rao, S.M.2
  • 10
    • 33644645589 scopus 로고    scopus 로고
    • Rock image classification using color features in Gabor space
    • 10.1117/1.2149872
    • Lepisto L, Kunttu I, Visa A (2005) Rock image classification using color features in Gabor space. J Electron Imaging 14(4):28-36
    • (2005) J Electron Imaging , vol.14 , Issue.4 , pp. 28-36
    • Lepisto, L.1    Kunttu, I.2    Visa, A.3
  • 11
    • 0025571602 scopus 로고
    • A review of image analysis techniques for measuring blast fragmentation
    • 10.1016/0167-9031(90)80003-Y
    • Hunter GC, McDermott C, Miles NJ, Singh A, Scoble MJ (1990) A review of image analysis techniques for measuring blast fragmentation. Min Sci Technol 11:19-36
    • (1990) Min Sci Technol , vol.11 , pp. 19-36
    • Hunter, G.C.1    McDermott, C.2    Miles, N.J.3    Singh, A.4    Scoble, M.J.5
  • 12
    • 80055020317 scopus 로고    scopus 로고
    • Rock particle image segmentation and systems in pattern recognition
    • P-Y Yin (eds) InTech Rijeka
    • Wang W (2008) Rock particle image segmentation and systems in pattern recognition. In: Yin P-Y (ed) Pattern recognition techniques, technology and applications. InTech, Rijeka, pp 197-226
    • (2008) Pattern Recognition Techniques, Technology and Applications , pp. 197-226
    • Wang, W.1
  • 13
    • 17244381500 scopus 로고    scopus 로고
    • Automated estimation of rock fragment distributions using computer vision and its application in mining
    • 10.1049/ip-vis:20050810
    • Salinas RA, Raff U, Farfan C (2005) Automated estimation of rock fragment distributions using computer vision and its application in mining. IEE Proc, Vis Image Signal Process 152(1):1-8
    • (2005) IEE Proc, Vis Image Signal Process , vol.152 , Issue.1 , pp. 1-8
    • Salinas, R.A.1    Raff, U.2    Farfan, C.3
  • 14
    • 0032188261 scopus 로고    scopus 로고
    • Analysis of ore particles based on textural pattern recognition
    • 10.1016/S0892-6875(98)00083-1
    • Petersen K, Aldrich C, Vandeventer JSJ (1998) Analysis of ore particles based on textural pattern recognition. Miner Eng 11:959-977
    • (1998) Miner Eng , vol.11 , pp. 959-977
    • Petersen, K.1    Aldrich, C.2    Vandeventer, J.S.J.3
  • 15
    • 80054968522 scopus 로고    scopus 로고
    • Rock textures classification based on textural and spectral features
    • Kachanubal T, Udomhunsakul S (2008) Rock textures classification based on textural and spectral features. Int J Comput Intell 4:240-246
    • (2008) Int J Comput Intell , vol.4 , pp. 240-246
    • Kachanubal, T.1    Udomhunsakul, S.2
  • 17
  • 19
    • 77953285163 scopus 로고    scopus 로고
    • Rock-type classification of an iron ore deposit using digital image analysis technique
    • 10.1504/IJMME.2008.020455
    • Chatterjee S, Bhattacherjee A, Samanta B, Pal SK (2008) Rock-type classification of an iron ore deposit using digital image analysis technique. Int J Min Miner Eng 1:22-46
    • (2008) Int J Min Miner Eng , vol.1 , pp. 22-46
    • Chatterjee, S.1    Bhattacherjee, A.2    Samanta, B.3    Pal, S.K.4
  • 20
    • 77953289746 scopus 로고    scopus 로고
    • Image-based quality monitoring system of limestone ore grades
    • 10.1016/j.compind.2009.10.003
    • Chatterjee S, Bhattacherjee A, Samanta B, Pal SK (2009) Image-based quality monitoring system of limestone ore grades. Comput Ind 61:391-408
    • (2009) Comput Ind , vol.61 , pp. 391-408
    • Chatterjee, S.1    Bhattacherjee, A.2    Samanta, B.3    Pal, S.K.4
  • 21
    • 0038329332 scopus 로고    scopus 로고
    • An improved branch and bound algorithm for feature selection
    • 10.1016/S0167-8655(03)00020-5
    • Chen X (2003) An improved branch and bound algorithm for feature selection. Pattern Recognit Lett 24(12):1925-1933
    • (2003) Pattern Recognit Lett , vol.24 , Issue.12 , pp. 1925-1933
    • Chen, X.1
  • 22
    • 3042527351 scopus 로고    scopus 로고
    • Fast branch & bound algorithms for optimal feature selection
    • 10.1109/TPAMI.2004.28
    • Somol P, Pudil P, Kittler J (2004) Fast branch & bound algorithms for optimal feature selection. IEEE Trans Pattern Anal Mach Intell 26(7):900-912
    • (2004) IEEE Trans Pattern Anal Mach Intell , vol.26 , Issue.7 , pp. 900-912
    • Somol, P.1    Pudil, P.2    Kittler, J.3
  • 23
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • 10.1016/j.patrec.2005.07.009
    • Hong J, Cho S (2006) Efficient huge-scale feature selection with speciated genetic algorithm. Pattern Recognit Lett 27:143-150
    • (2006) Pattern Recognit Lett , vol.27 , pp. 143-150
    • Hong, J.1    Cho, S.2
  • 24
    • 33750498463 scopus 로고    scopus 로고
    • An improved watershed algorithm based on efficient computation of shortest paths
    • 1119.68221 10.1016/j.patcog.2006.06.025
    • Osma-Ruiz V, Godino-Llorente JI, Sáenz-Lechón N, Gómez-Vilda P (2007) An improved watershed algorithm based on efficient computation of shortest paths. Pattern Recognit 40(3):1078-1090
    • (2007) Pattern Recognit , vol.40 , Issue.3 , pp. 1078-1090
    • Osma-Ruiz, V.1    Godino-Llorente, J.I.2    Sáenz-Lechón, N.3    Gómez-Vilda, P.4
  • 26
    • 33747886893 scopus 로고    scopus 로고
    • Automatic thresholding for defect detection
    • 10.1016/j.patrec.2006.03.009
    • Ng HF (2006) Automatic thresholding for defect detection. Pattern Recognit Lett 27(14):1644-1649
    • (2006) Pattern Recognit Lett , vol.27 , Issue.14 , pp. 1644-1649
    • Ng, H.F.1
  • 28
    • 29144516452 scopus 로고    scopus 로고
    • Locally adaptable mathematical morphology using distance transformations
    • 1122.68681 10.1016/j.patcog.2005.07.009
    • Cuisenaire O (2006) Locally adaptable mathematical morphology using distance transformations. Pattern Recognit 39(3):405-416
    • (2006) Pattern Recognit , vol.39 , Issue.3 , pp. 405-416
    • Cuisenaire, O.1
  • 29
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • 10.1109/TSMC.1979.4310076
    • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62-66
    • (1979) IEEE Trans Syst Man Cybern , vol.9 , pp. 62-66
    • Otsu, N.1
  • 30
    • 84868381657 scopus 로고    scopus 로고
    • A multi-threshold segmentation approach based on artificial bee colony optimization
    • 10.1007/s10489-011-0330-z
    • Cuevas E, Sención F, Zaldivar D, Pérez-Cisneros M, Sossa H (2012) A multi-threshold segmentation approach based on artificial bee colony optimization. Appl Intell 37(3):321-336
    • (2012) Appl Intell , vol.37 , Issue.3 , pp. 321-336
    • Cuevas, E.1    Sención, F.2    Zaldivar, D.3    Pérez-Cisneros, M.4    Sossa, H.5
  • 31
    • 79951798951 scopus 로고    scopus 로고
    • Automatic MR brain image segmentation using a multiseed based multiobjective clustering approach
    • 10.1007/s10489-010-0231-6
    • Saha S, Bandyopadhyay S (2011) Automatic MR brain image segmentation using a multiseed based multiobjective clustering approach. Appl Intell 35(3):411-427
    • (2011) Appl Intell , vol.35 , Issue.3 , pp. 411-427
    • Saha, S.1    Bandyopadhyay, S.2
  • 33
    • 79956124856 scopus 로고    scopus 로고
    • Genetic Algorithms for feature selection of image analysis-based quality monitoring model: An application to an iron mine
    • 10.1016/j.engappai.2010.11.009
    • Chatterjee S, Bhattacherjee A (2011) Genetic Algorithms for feature selection of image analysis-based quality monitoring model: an application to an iron mine. Eng Appl Artif Intell 24(5):786-795
    • (2011) Eng Appl Artif Intell , vol.24 , Issue.5 , pp. 786-795
    • Chatterjee, S.1    Bhattacherjee, A.2
  • 34
    • 53149141006 scopus 로고    scopus 로고
    • Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound
    • 10.1002/uog.5205
    • Huang YL, Chen DR, Jiang YR, Kuo SJ, Wu HK, Moon WK (2008) Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound. Ultrasound Obstet Gynecol 32:565-572
    • (2008) Ultrasound Obstet Gynecol , vol.32 , pp. 565-572
    • Huang, Y.L.1    Chen, D.R.2    Jiang, Y.R.3    Kuo, S.J.4    Wu, H.K.5    Moon, W.K.6
  • 35
    • 79956098534 scopus 로고    scopus 로고
    • Morphological feature selection and neural classification for electronic components
    • Lefkaditis D, Tsirigotis G (2009) Morphological feature selection and neural classification for electronic components. J Eng Sci Technol Rev 2(1):151-156
    • (2009) J Eng Sci Technol Rev , vol.2 , Issue.1 , pp. 151-156
    • Lefkaditis, D.1    Tsirigotis, G.2
  • 36
    • 0029378347 scopus 로고
    • Feature selection in the pattern classification problem of digital chest radiograph segmentation
    • 10.1109/42.414619
    • McNitt-Gray MF, Huang HK, Sayre JW (1995) Feature selection in the pattern classification problem of digital chest radiograph segmentation. IEEE Trans Med Imaging 14(3):537-547
    • (1995) IEEE Trans Med Imaging , vol.14 , Issue.3 , pp. 537-547
    • McNitt-Gray, M.F.1    Huang, H.K.2    Sayre, J.W.3
  • 37
    • 0019229279 scopus 로고
    • Finding structure in co-occurrence matrices for texture analysis
    • 10.1016/0146-664X(80)90016-7
    • Zucker SW, Terzopoulos D (1980) Finding structure in co-occurrence matrices for texture analysis. Comput Graph Image Process 12:286-308
    • (1980) Comput Graph Image Process , vol.12 , pp. 286-308
    • Zucker, S.W.1    Terzopoulos, D.2
  • 38
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • 10.1109/PROC.1979.11328
    • Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786-804
    • (1979) Proc IEEE , vol.67 , Issue.5 , pp. 786-804
    • Haralick, R.M.1
  • 39
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • 10.1016/S0146-664X(75)80008-6
    • Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4:172-179
    • (1975) Comput Graph Image Process , vol.4 , pp. 172-179
    • Galloway, M.M.1
  • 40
    • 0025585326 scopus 로고
    • Use of gray value distribution of run lengths for texture analysis
    • 0825.68570 10.1016/0167-8655(90)90112-F
    • Chu A, Sehgal CM, Greenleaf JF (1990) Use of gray value distribution of run lengths for texture analysis. Pattern Recognit Lett 11(6):415-420
    • (1990) Pattern Recognit Lett , vol.11 , Issue.6 , pp. 415-420
    • Chu, A.1    Sehgal, C.M.2    Greenleaf, J.F.3
  • 41
    • 0026276969 scopus 로고
    • Image characterizations based on joint gray-level run-length distributions
    • 10.1016/0167-8655(91)80014-2
    • Dasarathy BR, Holder EB (1991) Image characterizations based on joint gray-level run-length distributions. Pattern Recognit Lett 12:497-502
    • (1991) Pattern Recognit Lett , vol.12 , pp. 497-502
    • Dasarathy, B.R.1    Holder, E.B.2
  • 43
    • 84862152671 scopus 로고    scopus 로고
    • Improving classification performance of Support Vector Machine by genetically optimising kernel shape and hyper-parameters
    • 10.1007/s10489-010-0260-1
    • Dioşan L, Rogozan A, Pecuchet JP (2012) Improving classification performance of Support Vector Machine by genetically optimising kernel shape and hyper-parameters. Appl Intell 36(2):280-294
    • (2012) Appl Intell , vol.36 , Issue.2 , pp. 280-294
    • Dioşan, L.1    Rogozan, A.2    Pecuchet, J.P.3
  • 44
    • 84862586717 scopus 로고    scopus 로고
    • An enhanced Support Vector Machine classification framework by using Euclidean distance function for text document categorization
    • 10.1007/s10489-011-0314-z
    • Lee LH, Wan CH, Rajkumar R, Isa D (2012) An enhanced Support Vector Machine classification framework by using Euclidean distance function for text document categorization. Appl Intell 37(1):80-99
    • (2012) Appl Intell , vol.37 , Issue.1 , pp. 80-99
    • Lee, L.H.1    Wan, C.H.2    Rajkumar, R.3    Isa, D.4
  • 46
    • 77956738009 scopus 로고    scopus 로고
    • Sequential multi-criteria feature selection algorithm based on agent genetic algorithm
    • 10.1007/s10489-008-0153-8
    • Li Y, Zeng X (2010) Sequential multi-criteria feature selection algorithm based on agent genetic algorithm. Appl Intell 33(2):117-131
    • (2010) Appl Intell , vol.33 , Issue.2 , pp. 117-131
    • Li, Y.1    Zeng, X.2
  • 47
    • 84862536593 scopus 로고    scopus 로고
    • A novel feature selection method based on normalized mutual information
    • 10.1007/s10489-011-0315-y
    • Vinh LT, Lee S, Park YT, d'Auriol BJ (2012) A novel feature selection method based on normalized mutual information. Appl Intell 37(1):100-120
    • (2012) Appl Intell , vol.37 , Issue.1 , pp. 100-120
    • Vinh, L.T.1    Lee, S.2    Park, Y.T.3    D'Auriol, B.J.4
  • 53
    • 84862145454 scopus 로고    scopus 로고
    • Simultaneous optimization of artificial neural networks for financial forecasting
    • 1736626 10.1007/s10489-011-0303-2
    • Kim K, Ahn H (2012) Simultaneous optimization of artificial neural networks for financial forecasting. Appl Intell 36(4):887-898
    • (2012) Appl Intell , vol.36 , Issue.4 , pp. 887-898
    • Kim, K.1    Ahn, H.2
  • 54
    • 78149281644 scopus 로고    scopus 로고
    • A local linear radial basis function neural network for financial time-series forecasting
    • 10.1007/s10489-009-0171-1
    • Nekoukar V, Beheshti MTH (2010) A local linear radial basis function neural network for financial time-series forecasting. Appl Intell 33(3):352-356
    • (2010) Appl Intell , vol.33 , Issue.3 , pp. 352-356
    • Nekoukar, V.1    Beheshti, M.T.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.