-
1
-
-
84869199946
-
Plasmonic bowtie nanolaser arrays
-
J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, "Plasmonic bowtie nanolaser arrays," Nano Lett. 12, 5769-5774 (2012
-
(2012)
Nano Lett.
, vol.12
, pp. 5769-5774
-
-
Suh, J.1
Kim, C.2
Zhou, W.3
Huntington, M.4
Co, D.5
Wasielewski, M.6
Odom, T.7
-
2
-
-
80053141483
-
Electrically controlled nonlinear generation of light with plasmonics
-
W. Cai, A. P. Vasudev, and M. L. Brongersma, "Electrically controlled nonlinear generation of light with plasmonics," Science 333, 1720-1723 (2011
-
(2011)
Science
, vol.333
, pp. 1720-1723
-
-
Cai, W.1
Vasudev, A.P.2
Brongersma, M.L.3
-
3
-
-
77956143629
-
Fano resonances in nanoscale structures
-
A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys. 82, 2257-2298 (2010
-
(2010)
Rev. Mod. Phys.
, vol.82
, pp. 2257-2298
-
-
Miroshnichenko, A.E.1
Flach, S.2
Kivshar, Y.S.3
-
4
-
-
70350575309
-
Plasmonic nanorod metamaterials for biosensing
-
A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nat. Mater. 8, 867-871 (2009
-
(2009)
Nat. Mater.
, vol.8
, pp. 867-871
-
-
Kabashin, A.1
Evans, P.2
Pastkovsky, S.3
Hendren, W.4
Wurtz, G.5
Atkinson, R.6
Pollard, R.7
Podolskiy, V.8
Zayats, A.9
-
5
-
-
84873965956
-
Sers in ordered array of geometrically controlled nanodots obtained using anodic porous alumina
-
T. Kondo, H. Masuda, and K. Nishio, "SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina," J. Phys. Chem. C 117, 2531-2534 (2013
-
(2013)
J. Phys. Chem.
, vol.C 117
, pp. 2531-2534
-
-
Kondo, T.1
Masuda, H.2
Nishio, K.3
-
6
-
-
84874407710
-
Uniform gold spherical particles for single-particle surface-enhanced raman spectroscopy
-
H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, "Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy," Phys. Chem. Chem. Phys. 15, 4130-4135 (2013
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 4130-4135
-
-
Lin, H.-X.1
Li, J.-M.2
Liu, B.-J.3
Liu, D.-Y.4
Liu, J.5
Terfort, A.6
Xie, Z.-X.7
Tian, Z.-Q.8
Ren, B.9
-
7
-
-
84865453301
-
Sers and antibacterial active green synthesized gold nanoparticles
-
S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, "SERS and antibacterial active green synthesized gold nanoparticles," Plasmonics 7, 515-524 (2012
-
(2012)
Plasmonics
, vol.7
, pp. 515-524
-
-
Smitha, S.1
Gopchandran, K.2
Nair, N.3
Nampoothiri, K.4
Ravindran, T.5
-
8
-
-
79960803062
-
Site selective surface enhanced raman on nanostructured cavities
-
F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, "Site selective surface enhanced Raman on nanostructured cavities," Appl. Phys. Lett. 99, 033104 (2011
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 033104
-
-
Lordan, F.1
Rice, J.H.2
Jose, B.3
Forster, R.J.4
Keyes, T.E.5
-
9
-
-
34047255791
-
Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment
-
K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007
-
(2007)
J. Phys. Chem.
, vol.C 111
, pp. 4180-4184
-
-
Ueno, K.1
Juodkazis, S.2
Mino, M.3
Mizeikis, V.4
Misawa, H.5
-
10
-
-
0033520760
-
Surface enhanced raman spectroscopy of individual rhodamine 6g molecules on large ag nanocrystals
-
A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 9932-9939
-
-
Michaels, A.M.1
Nirmal, M.2
Brus, L.E.3
-
11
-
-
84856421615
-
Gap-plasmon nanoantennas and bowtie resonators
-
D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, "Gap-plasmon nanoantennas and bowtie resonators," Phys. Rev. B 85, 045434 (2012
-
(2012)
Phys. Rev.
, vol.B 85
, pp. 045434
-
-
Gramotnev, D.K.1
Pors, A.2
Willatzen, M.3
Bozhevolnyi, S.I.4
-
12
-
-
41549169598
-
Nanomechanical control of an optical antenna
-
J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008
-
(2008)
Nat. Photonics
, vol.2
, pp. 230-233
-
-
Merlein, J.1
Kahl, M.2
Zuschlag, A.3
Sell, A.4
Halm, A.5
Boneberg, J.6
Leiderer, P.7
Leitenstorfer, A.8
Bratschitsch, R.9
-
13
-
-
79960525059
-
Homogeneous nano-patterning using plasmon-Assisted photolithography
-
K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, "Homogeneous nano-patterning using plasmon-Assisted photolithography," Appl. Phys. Lett. 99, 011107 (2011
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 011107
-
-
Ueno, K.1
Takabatake, S.2
Onishi, K.3
Itoh, H.4
Nishijima, Y.5
Misawa, H.6
-
14
-
-
79960226814
-
Long-distance indirect excitation of nanoplasmonic resonances
-
W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, "Long-distance indirect excitation of nanoplasmonic resonances," Nano Lett. 11, 2765-2769 (2011
-
(2011)
Nano Lett.
, vol.11
, pp. 2765-2769
-
-
Khunsin, W.1
Brian, B.2
Dorfmuller, J.3
Esslinger, M.4
Vogelgesang, R.5
Etrich, C.6
Rockstuhl, C.7
Dmitriev, A.8
Lern, L.9
-
15
-
-
0000861353
-
Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance
-
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 4721-4724
-
-
Lamprecht, B.1
Schider, G.2
Lechner, R.T.3
Ditlbacher, H.4
Krenn, J.R.5
Leitner, A.6
Aussenegg, F.R.7
-
16
-
-
84861175785
-
Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting
-
Y. Nishijima, L. Rosa, and S. Juodkazis, "Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting," Opt. Express 20, 11466-11477 (2012
-
(2012)
Opt. Express
, vol.20
, pp. 11466-11477
-
-
Nishijima, Y.1
Rosa, L.2
Juodkazis, S.3
-
17
-
-
79251553446
-
Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback
-
R.Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, "Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback," Nanotechnology 22, 055304 (2011
-
(2011)
Nanotechnology
, vol.22
, pp. 055304
-
-
Buividas, R.1
Rosa, L.2
Sliupas, R.3
Kudrius, T.4
Slekys, G.5
Datsyuk, V.6
Juodkazis, S.7
-
18
-
-
84870914421
-
Sers substrate for detection of explosives
-
A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, "SERS substrate for detection of explosives," Nanoscale 4, 7419-7424 (2012
-
(2012)
Nanoscale
, vol.4
, pp. 7419-7424
-
-
Chou, A.1
Jaatinen, E.2
Buividas, R.3
Seniutinas, G.4
Juodkazis, S.5
Izake, E.L.6
Fredericks, P.M.7
-
19
-
-
8644225102
-
Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites
-
A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, "Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites," Phys. Rev. B 60, 16389-16408 (1999
-
(1999)
Phys. Rev. B
, vol.60
, pp. 16389-16408
-
-
Sarychev, A.K.1
Shubin, V.A.2
Shalaev, V.M.3
-
20
-
-
42749102223
-
Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?
-
M. I. Stockman, S. V. Faleev, and S. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?," Phys. Rev. Lett. 87, 167401 (2001
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 167401
-
-
Stockman, M.I.1
Faleev, S.V.2
Bergman, S.J.3
-
21
-
-
66749138953
-
Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles
-
J. B. Khurgin and G. Sun, "Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles," Appl. Phys. Lett. 94, 22111 (2009
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 22111
-
-
Khurgin, J.B.1
Sun, G.2
-
22
-
-
0037449876
-
Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems
-
D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 027402
-
-
Bergman, D.J.1
Stockman, M.I.2
-
23
-
-
69349103221
-
Demonstration of a spaser-based nanolaser
-
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature 460, 1110-1112 (2009
-
(2009)
Nature
, vol.460
, pp. 1110-1112
-
-
Noginov, M.A.1
Zhu, G.2
Belgrave, A.M.3
Bakker, R.4
Shalaev, V.M.5
Narimanov, E.E.6
Stout, S.7
Herz, E.8
Suteewong, T.9
Wiesner, U.10
-
24
-
-
84864077160
-
Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold
-
M. Cao, M. Wang, and N. Gu, "Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold," Plasmonics 7, 347-351 (2012
-
(2012)
Plasmonics
, vol.7
, pp. 347-351
-
-
Cao, M.1
Wang, M.2
Gu, N.3
-
25
-
-
84865075325
-
Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances
-
F. Eftekhari and T. J. Davis, "Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances," Phys. Rev. B 86, 075428 (2012
-
(2012)
Phys. Rev.
, vol.B 86
, pp. 075428
-
-
Eftekhari, F.1
Davis, T.J.2
-
26
-
-
84870374822
-
Unusual optical properties of the au/ag alloy at the matching mole fraction
-
Y. Nishijima and S. Akiyama, "Unusual optical properties of the Au/Ag alloy at the matching mole fraction," Opt. Mater. Express 2, 1226-1235 (2012
-
(2012)
Opt. Mater. Express
, vol.2
, pp. 1226-1235
-
-
Nishijima, Y.1
Akiyama, S.2
-
27
-
-
0032360290
-
Surface-enhanced raman scattering
-
A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev. 27, 241-250 (1998
-
(1998)
Chem. Soc. Rev.
, vol.27
, pp. 241-250
-
-
Campion, A.1
Kambhampati, P.2
-
28
-
-
45149105081
-
A unified approach to surface-enhanced raman spectroscopy
-
J. R. Lombardi and R. L. Birke, "A unified approach to surface-enhanced Raman spectroscopy," J. Phys. Chem. C 112, 5605-5617 (2008
-
(2008)
J. Phys. Chem.
, vol.C 112
, pp. 5605-5617
-
-
Lombardi, J.R.1
Birke, R.L.2
-
30
-
-
84947072914
-
Plasmonic solutions for light harvesting in solar and sensing applications
-
J. W.M. Chon and K. Iniewski, eds., (CRC Press), Chap. 3
-
S. Juodkazis, L. Rosa, and Y. Nishijima, "Plasmonic solutions for light harvesting in solar and sensing applications," in Nanoplasmonics: Advanced Device Applications J. W. M. Chon and K. Iniewski, eds., (CRC Press, 2013), Chap. 3.
-
(2013)
Nanoplasmonics: Advanced Device Applications
-
-
Juodkazis, S.1
Rosa, L.2
Nishijima, Y.3
-
33
-
-
84878877401
-
-
For Example Consider A One-dimensional Intensity Distribution I1(x) Having Constant Value 1 For 0 < X < 10 And A Second Distribution I2(x) Having Value 0.8 For 0 < X < 8 And 1.8 For 8 < X < 10. While The Two Distributions Have The Same Average I1= I2= 1 I2(x) Is Clearly Less Uniform Than I1(x). This Is Reflected In The Greater Value Of The Variance Estimator I2 2-I2-2=1.16 With Respect To I2 1-I1-2=1. In Order To Maximize Its Value The Distribution Should Have A High Degree Of Non-uniformity Which Can Be Slightly Increased By Mixing Nano-bricks With High Aspect Ratio While It Is The Greatest (thus High Enhancement) For A Random Distribution. When R Is Increased For The T-mode The Non-uniformity Is Increased And The Wavelength Decreased Both Of Which Favor An Increase In Raman Scattering Relative To Extinction (as The Raman Scattering Cross-section Is Proportional To 1⌊ 4).
-
For example, consider a one-dimensional intensity distribution I1(x), having constant value 1 for 0 < x < 10, and a second distribution I2(x) having value 0.8 for 0 < x < 8 and 1.8 for 8 < x < 10. While the two distributions have the same average I1= I2= 1, I2(x) is clearly less uniform than I1(x). This is reflected in the greater value of the variance estimator I2 2 /-I2-2=1.16 with respect to I2 1 /-I1-2=1. In order to maximize its value the distribution should have a high degree of non-uniformity, which can be slightly increased by mixing nano-bricks with high aspect ratio, while it is the greatest (thus high enhancement) for a random distribution. When R is increased, for the T-mode the non-uniformity is increased and the wavelength decreased, both of which favor an increase in Raman scattering relative to extinction (as the Raman scattering cross-section is proportional to 1/⌊ 4). For the L-mode, both non-uniformity and wavelength increase, thus the two factors compensate each other, reducing the growth of Raman intensity with R.
-
-
-
-
34
-
-
79961193363
-
Coupled-mode theory of field enhancement in complex metal nanostructures
-
G. Sun, J. B. Khurgin, and A. Bratkovsky, "Coupled-mode theory of field enhancement in complex metal nanostructures," Phys. Rev. B 84, 045415 (2011
-
(2011)
Phys. Rev.
, vol.B 84
, pp. 045415
-
-
Sun, G.1
Khurgin, J.B.2
Bratkovsky, A.3
-
35
-
-
84875736871
-
Black silicon: Substrate for laser 3d micro/nano-polymerization
-
A. Zukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, and S. Juodkazis, "Black silicon: substrate for laser 3D micro/nano-polymerization," Opt. Express 21, 6901-6909 (2013).
-
(2013)
Opt. Express
, vol.21
, pp. 6901-6909
-
-
Zukauskas, A.1
Malinauskas, M.2
Kadys, A.3
Gervinskas, G.4
Seniutinas, G.5
Kandasamy, S.6
Juodkazis, S.7
|