메뉴 건너뛰기




Volumn 56, Issue 5, 2013, Pages 1-14

Visual analytics for the clustering capability of data

Author keywords

clustering analysis; data mining; minimum distance spectrum; nearest neighbor spectrum; outliers; visual analysis

Indexed keywords

CLUSTERING ANALYSIS; MINIMUM DISTANCE; NEAREST NEIGHBORS; OUTLIERS; VISUAL ANALYSIS;

EID: 84878317654     PISSN: 1674733X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11432-013-4832-7     Document Type: Article
Times cited : (5)

References (40)
  • 1
    • 84878327963 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • Han J, Kamber M. Data Mining: Concepts and Techniques. Morgan Kauffman, 2011.
    • (2011) Morgan Kauffman
    • Han, J.1    Kamber, M.2
  • 2
    • 77954448046 scopus 로고    scopus 로고
    • An unsupervised grid-based approach for clustering analysis
    • Yue S H, Wang J S, Tao G, et al. An unsupervised grid-based approach for clustering analysis. Sci China Inf Sci, 2010, 53: 1345-1357.
    • (2010) Sci China Inf Sci , vol.53 , pp. 1345-1357
    • Yue, S.H.1    Wang, J.S.2    Tao, G.3
  • 3
    • 77949655248 scopus 로고    scopus 로고
    • Hierarchical aggregation for information visualization: overview, techniques and design guidelines
    • Elmqvist N. Hierarchical aggregation for information visualization: overview, techniques and design guidelines. IEEE Trans Vis Comput Graph, 2010, 16: 439-454.
    • (2010) IEEE Trans Vis Comput Graph , vol.16 , pp. 439-454
    • Elmqvist, N.1
  • 4
    • 54949133661 scopus 로고    scopus 로고
    • Geometry-based edge clustering for graph visualization
    • Cui W W, Zhou H, Qu H M, et al. Geometry-based edge clustering for graph visualization. IEEE Trans Vis Comput Graph, 2008, 14: 1277-1284.
    • (2008) IEEE Trans Vis Comput Graph , vol.14 , pp. 1277-1284
    • Cui, W.W.1    Zhou, H.2    Qu, H.M.3
  • 5
    • 67349242966 scopus 로고    scopus 로고
    • Exploiting data topology in visualization and clustering of self-organizing maps
    • Tasdemir K. Exploiting data topology in visualization and clustering of self-organizing maps. IEEE Trans Neural Netw, 2009, 20: 549-562.
    • (2009) IEEE Trans Neural Netw , vol.20 , pp. 549-562
    • Tasdemir, K.1
  • 6
    • 77952216507 scopus 로고    scopus 로고
    • Automated hierarchical density shaving: a robust automated clustering and visualization framework for large biological data sets
    • Gupta G. Automated hierarchical density shaving: a robust automated clustering and visualization framework for large biological data sets. IEEE-ACM Trans Comput Biol Bioinform, 2010, 7: 223-237.
    • (2010) IEEE-ACM Trans Comput Biol Bioinform , vol.7 , pp. 223-237
    • Gupta, G.1
  • 7
    • 54949122967 scopus 로고    scopus 로고
    • Surface extraction from multi-field particle volume data using multidimensional cluster visualization
    • Linsen L. Surface extraction from multi-field particle volume data using multidimensional cluster visualization. IEEE Trans Vis Comput Graph, 2008, 14: 1483-1490.
    • (2008) IEEE Trans Vis Comput Graph , vol.14 , pp. 1483-1490
    • Linsen, L.1
  • 8
    • 78649517772 scopus 로고    scopus 로고
    • iRaster: A novel information visualization tool to explore spatiotemporal patterns in multiple spike trains
    • Somerville J, Stuart L, Sernagor E. iRaster: A novel information visualization tool to explore spatiotemporal patterns in multiple spike trains. J Neurosci Methods, 2010, 194: 158-171.
    • (2010) J Neurosci Methods , vol.194 , pp. 158-171
    • Somerville, J.1    Stuart, L.2    Sernagor, E.3
  • 15
    • 77957833594 scopus 로고    scopus 로고
    • Exemplar-based visualization of large document corpus
    • Chen Y, Wang L, Dong M, et al. Exemplar-based visualization of large document corpus. IEEE Trans Vis Comput Graph, 2009, 15: 1161-1168.
    • (2009) IEEE Trans Vis Comput Graph , vol.15 , pp. 1161-1168
    • Chen, Y.1    Wang, L.2    Dong, M.3
  • 19
    • 23944436897 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data
    • Agrawal R, Gehrke J, Gunopulos D, et al. Automatic subspace clustering of high dimensional data. Data Min Knowl Discov, 2005, 11: 5-33.
    • (2005) Data Min Knowl Discov , vol.11 , pp. 5-33
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3
  • 22
    • 84976715951 scopus 로고
    • Tree visualization with treemaps: A 2D space-filling approach
    • Shneiderman B. Tree visualization with treemaps: A 2D space-filling approach. ACM Trans Graph, 1992, 11: 92-99.
    • (1992) ACM Trans Graph , vol.11 , pp. 92-99
    • Shneiderman, B.1
  • 23
    • 33751049843 scopus 로고
    • Visualizing n-dimensional virtual worlds with n-vision
    • Beshers C, Feiner S K. Visualizing n-dimensional virtual worlds with n-vision. ACM SIGGRAPH Comput Graph, 1990, 24: 37-38.
    • (1990) ACM SIGGRAPH Comput Graph , vol.24 , pp. 37-38
    • Beshers, C.1    Feiner, S.K.2
  • 25
    • 84949331034 scopus 로고
    • The use of faces to represent points in k-dimensional space graphically
    • Chernoff H. The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc, 1973, 68: 361-368.
    • (1973) J Am Stat Assoc , vol.68 , pp. 361-368
    • Chernoff, H.1
  • 27
    • 0010025883 scopus 로고
    • Visual analyses of texture in the detection and recognition of objects
    • B. C. Lipkin and A. Rosenfeld (Eds.), New York: Academic Press
    • Pickett R M. Visual analyses of texture in the detection and recognition of objects. In: Lipkin B C, Rosenfeld A, eds. Picture Processing and Psychopictorics. New York: Academic Press, 1970. 289-308.
    • (1970) Picture Processing and Psychopictorics , pp. 289-308
    • Pickett, R.M.1
  • 29
    • 0028514142 scopus 로고    scopus 로고
    • VisDB: Database exploration using multidimensional visualization
    • Keim D, Kriegel H. VisDB: Database exploration using multidimensional visualization. IEEE Comput Graph Appl, 2002, 14: 40-49.
    • (2002) IEEE Comput Graph Appl , vol.14 , pp. 40-49
    • Keim, D.1    Kriegel, H.2
  • 30
    • 33947603702 scopus 로고    scopus 로고
    • Value and relation display: Interactive visual exploration of large data sets with hundreds of dimensions
    • Yang J, Hubball D, Ward M, et al. Value and relation display: Interactive visual exploration of large data sets with hundreds of dimensions. IEEE Trans Vis Comput Graph, 2007, 13: 494-507.
    • (2007) IEEE Trans Vis Comput Graph , vol.13 , pp. 494-507
    • Yang, J.1    Hubball, D.2    Ward, M.3
  • 31
    • 80955157762 scopus 로고    scopus 로고
    • DICON: Interactive visual analysis of multidimensional clusters
    • Nan C, David G, Sun J M, et al. DICON: Interactive visual analysis of multidimensional clusters. IEEE Trans Vis Comput Graph, 2011, 17: 2581-2590.
    • (2011) IEEE Trans Vis Comput Graph , vol.17 , pp. 2581-2590
    • Nan, C.1    David, G.2    Sun, J.M.3
  • 33
    • 84872791779 scopus 로고    scopus 로고
    • Clustering by data competition
    • Lu Z M, Zhang Q. Clustering by data competition. Sci China Inf Sci, 2013, 56: 012105.
    • (2013) Sci China Inf Sci , vol.56 , pp. 012105
    • Lu, Z.M.1    Zhang, Q.2
  • 34
    • 84861334189 scopus 로고    scopus 로고
    • Data Ming: Practical Machine Learning Tools and Techniques
    • Witten L H, Frank E, Hall M A. Data Ming: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2011.
    • (2011) Morgan Kaufmann
    • Witten, L.H.1    Frank, E.2    Hall, M.A.3
  • 35
    • 13844276694 scopus 로고    scopus 로고
    • Clustering analysis for gene expression data: A survey
    • Jiang D X, Tang C, Zhang A D. Clustering analysis for gene expression data: A survey. IEEE Trans Knowl Data Eng, 2004, 16: 1370-1386.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , pp. 1370-1386
    • Jiang, D.X.1    Tang, C.2    Zhang, A.D.3
  • 36
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol, 2002, 3: 1-21.
    • (2002) Genome Biol , vol.3 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 37
    • 84945923591 scopus 로고
    • A method for comparing two hierarchical clusterings
    • Fowlkes E B, Mallows C L. A method for comparing two hierarchical clusterings. J Am Stat Assoc, 1983, 78: 553-569.
    • (1983) J Am Stat Assoc , vol.78 , pp. 553-569
    • Fowlkes, E.B.1    Mallows, C.L.2
  • 39
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing message between data points
    • Frey B J, Dueck D. Clustering by passing message between data points. Science, 2007, 315: 972-976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.