메뉴 건너뛰기




Volumn 56, Issue 1, 2013, Pages 1-13

Clustering by data competition

Author keywords

clustering analysis; data competition; data mining; partitional clustering

Indexed keywords


EID: 84872791779     PISSN: 1674733X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11432-012-4627-2     Document Type: Article
Times cited : (5)

References (31)
  • 1
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw, 2005, 16: 645-678.
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 2
    • 39749179872 scopus 로고    scopus 로고
    • Clustering algorithms research
    • Sun J G, Liu J, Zhao L Y. Clustering algorithms research. J Softw, 2008, 19: 48-61.
    • (2008) J Softw , vol.19 , pp. 48-61
    • Sun, J.G.1    Liu, J.2    Zhao, L.Y.3
  • 3
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • Filippone M, Camastra F, Masulli F, et al. A survey of kernel and spectral methods for clustering. Pattern Recognit, 2008, 41: 176-190.
    • (2008) Pattern Recognit , vol.41 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3
  • 4
    • 34247272280 scopus 로고    scopus 로고
    • Spectral clustering based on matrix pertur-bation theory
    • Tian Z, Li X B, Ju Y W. Spectral clustering based on matrix pertur-bation theory. Sci China Ser F: Inf Sci, 2007, 50: 63-81.
    • (2007) Sci China Ser F: Inf Sci , vol.50 , pp. 63-81
    • Tian, Z.1    Li, X.B.2    Ju, Y.W.3
  • 5
    • 49349113304 scopus 로고    scopus 로고
    • Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms
    • Fernández A, Gómez S. Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms. J Classif, 2008, 25: 43-65.
    • (2008) J Classif , vol.25 , pp. 43-65
    • Fernández, A.1    Gómez, S.2
  • 7
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing message between data points
    • Frey B J, Dueck D. Clustering by passing message between data points. Science, 2007, 315: 972-976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 11
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting K-means algorithm for subspace clustering of high-dimensional sparse data
    • Jing L P, Michael K N, Huang J Z. An entropy weighting K-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans Knowl Data Eng, 2007, 19: 1026-1041.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , pp. 1026-1041
    • Jing, L.P.1    Michael, K.N.2    Huang, J.Z.3
  • 12
    • 80052655272 scopus 로고    scopus 로고
    • Color based image segmentation using K-means clustering
    • Chitade A Z, Katiyar S K. Color based image segmentation using K-means clustering. Int J Eng Sci Technol, 2010, 2: 5319-5325.
    • (2010) Int J Eng Sci Technol , vol.2 , pp. 5319-5325
    • Chitade, A.Z.1    Katiyar, S.K.2
  • 15
    • 56349158295 scopus 로고    scopus 로고
    • A simple and fast algorithm for K-medoids clustering
    • Park H S, Jun C H. A simple and fast algorithm for K-medoids clustering. Expert Syst Appl, 2009, 36: 3336-3341.
    • (2009) Expert Syst Appl , vol.36 , pp. 3336-3341
    • Park, H.S.1    Jun, C.H.2
  • 16
    • 62349142182 scopus 로고    scopus 로고
    • A genetic algorithm with gene rearrangement for K-means clustering
    • Chang D X, Zhang X D, Zheng C W. A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recognit, 2009, 42: 1210-1222.
    • (2009) Pattern Recognit , vol.42 , pp. 1210-1222
    • Chang, D.X.1    Zhang, X.D.2    Zheng, C.W.3
  • 17
    • 23844528211 scopus 로고    scopus 로고
    • Cluster center initialization algorithm for K-means clustering
    • Shehroz S K, Amir A. Cluster center initialization algorithm for K-means clustering. Pattern Recognit Lett, 2004, 25: 1293-1302.
    • (2004) Pattern Recognit Lett , vol.25 , pp. 1293-1302
    • Shehroz, S.K.1    Amir, A.2
  • 18
    • 75749122583 scopus 로고    scopus 로고
    • Fast global K-means clustering using cluster membership and inequality
    • Jim Z C L, Huang T J. Fast global K-means clustering using cluster membership and inequality. Pattern Recognit, 2010, 43: 1954-1963.
    • (2010) Pattern Recognit , vol.43 , pp. 1954-1963
    • Jim, Z.C.L.1    Huang, T.J.2
  • 19
    • 77949524803 scopus 로고    scopus 로고
    • Temporal clustering by affinity propagation reveals transcriptional modules in arabidopsis thaliana
    • Kiddle S J, Windram O P, Mchattie S. Temporal clustering by affinity propagation reveals transcriptional modules in arabidopsis thaliana. Bioinformatics, 2010, 26: 355-362.
    • (2010) Bioinformatics , vol.26 , pp. 355-362
    • Kiddle, S.J.1    Windram, O.P.2    Mchattie, S.3
  • 20
    • 0037008520 scopus 로고    scopus 로고
    • nalytic and algorithmic solution of random satisfability problems
    • Mézard M, Parisi G, Zecchina R. Analytic and algorithmic solution of random satisfability problems. Science, 2002, 297: 812-815.
    • (2002) Science , vol.297 , pp. 812-815
    • Mézard, M.1    Parisi, G.2    Zecchina, R.A.3
  • 21
    • 0141543687 scopus 로고    scopus 로고
    • Passing messages between disciplines
    • Mézard M. Passing messages between disciplines. Science, 2003, 301: 1685-1686.
    • (2003) Science , vol.301 , pp. 1685-1686
    • Mézard, M.1
  • 22
    • 38949090436 scopus 로고    scopus 로고
    • Comment on 'clustering by passing messages between data points
    • Michael J B, Kohn H F. Comment on 'clustering by passing messages between data points'. Science, 2008, 319: 726-726.
    • (2008) Science , vol.319 , pp. 726
    • Michael, J.B.1    Kohn, H.F.2
  • 23
    • 38949137845 scopus 로고    scopus 로고
    • Response to comment on 'clustering by passing messages between data points
    • Frey B J, Dueck D. Response to comment on 'clustering by passing messages between data points'. Science, 2008, 319: 726-726.
    • (2008) Science , vol.319 , pp. 726
    • Frey, B.J.1    Dueck, D.2
  • 24
    • 79956131625 scopus 로고    scopus 로고
    • Energy based competitive learning
    • Wang C D, Lai J H. Energy based competitive learning. Neurocomputing, 2011, 74: 2265-2275.
    • (2011) Neurocomputing , vol.74 , pp. 2265-2275
    • Wang, C.D.1    Lai, J.H.2
  • 25
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans Neural Netw, 1993, 4: 636-649.
    • (1993) IEEE Trans Neural Netw , vol.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 26
    • 84872825857 scopus 로고    scopus 로고
    • December 5. Available from
    • Wang K J. Supplement for affinity propagation. 2011 December 5. Available from: http://www. mathworks. com/matlabcentral/fileexchange/authors/24811.
    • (2011) Supplement for affinity propagation
    • Wang, K.J.1
  • 27
    • 84872797794 scopus 로고    scopus 로고
    • UCI Machine Learning Repositpory, December 5. Available from:
    • UCI Machine Learning Repositpory. 2011 December 5. Available from: http://archive. ics. uci. edu/ml/.
    • (2011)
  • 29
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Jiang D X, Tang C, Zhang A D. Cluster analysis for gene expression data: A survey. IEEE Trans Knowl Data Eng, 2004, 16: 1370-1386.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , pp. 1370-1386
    • Jiang, D.X.1    Tang, C.2    Zhang, A.D.3
  • 30
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol, 2002, 3: 1-21.
    • (2002) Genome Biol , vol.3 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 31
    • 84945923591 scopus 로고
    • A method for comparing two hierarchical clusterings
    • Fowlkes E B, Mallows C L. A method for comparing two hierarchical clusterings. J Am Stat Assoc, 1983, 78: 553-569.
    • (1983) J Am Stat Assoc , vol.78 , pp. 553-569
    • Fowlkes, E.B.1    Mallows, C.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.