-
1
-
-
43249113450
-
-
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., 1998. Automatic subspace clustering of high dimensional data. In: Proc. ACM SIGMOD Internat. Conf., Seattle, WA, pp. 73-84.
-
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., 1998. Automatic subspace clustering of high dimensional data. In: Proc. ACM SIGMOD Internat. Conf., Seattle, WA, pp. 73-84.
-
-
-
-
2
-
-
23944436897
-
Automatic subspace clustering of high dimensional data
-
Agrawal R., Gehrke J., Gunopulos D., et al. Automatic subspace clustering of high dimensional data. Data Mining. Knowl. Disc. 11 1 (2005) 5-33
-
(2005)
Data Mining. Knowl. Disc.
, vol.11
, Issue.1
, pp. 5-33
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
-
3
-
-
43249096566
-
-
AlphaMiner2.0: .
-
AlphaMiner2.0: .
-
-
-
-
4
-
-
84947205653
-
-
Beyer, K.S., Goldstein, J., Ramakrishnan, R., 1999. When is 'Nearest Neighbor' meaningful? In: Proc. 1st Internat. Conf. Database Theory (ICDT), pp. 217-235.
-
Beyer, K.S., Goldstein, J., Ramakrishnan, R., 1999. When is 'Nearest Neighbor' meaningful? In: Proc. 1st Internat. Conf. Database Theory (ICDT), pp. 217-235.
-
-
-
-
7
-
-
0001345686
-
Context-sensitive learning methods for text categorization
-
Cohen W., and Singer W. Context-sensitive learning methods for text categorization. ACM. Trans. Info. Systems 17 2 (1999) 141-173
-
(1999)
ACM. Trans. Info. Systems
, vol.17
, Issue.2
, pp. 141-173
-
-
Cohen, W.1
Singer, W.2
-
8
-
-
0346216908
-
A new shifting grid clustering algorithm
-
Eden W., Ma M., and Tommy W.S. A new shifting grid clustering algorithm. Pattern Recognition 37 (2004) 503-514
-
(2004)
Pattern Recognition
, vol.37
, pp. 503-514
-
-
Eden, W.1
Ma, M.2
Tommy, W.S.3
-
9
-
-
0002442796
-
Machine learning in automated text categorization
-
Fabrizio S. Machine learning in automated text categorization. ACM Comput. Surv. 34 1 (2002) 1-47
-
(2002)
ACM Comput. Surv.
, vol.34
, Issue.1
, pp. 1-47
-
-
Fabrizio, S.1
-
10
-
-
0041471321
-
A new cluster isolation criterion based on dissimilarity increments
-
Fred A., and Leitao J. A new cluster isolation criterion based on dissimilarity increments. IEEE Trans. Pattern Anal. Machine Intell. 25 8 (2003) 944-952
-
(2003)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.25
, Issue.8
, pp. 944-952
-
-
Fred, A.1
Leitao, J.2
-
11
-
-
84883402747
-
-
Grabusts, P., Borisov, A., 2002. Using grid-clustering methods in data classification. In: Internat. Conf. on Parallel Computing in Electrical Engineering.
-
Grabusts, P., Borisov, A., 2002. Using grid-clustering methods in data classification. In: Internat. Conf. on Parallel Computing in Electrical Engineering.
-
-
-
-
12
-
-
0032091595
-
-
Guha, S., Rastogi, R., Shim, K., 1998. CURE: An efficient clustering algorithm for large databases. In: Proc. ACM SIGMOD Internat. Conf. Management of Data, pp. 73-84.
-
Guha, S., Rastogi, R., Shim, K., 1998. CURE: An efficient clustering algorithm for large databases. In: Proc. ACM SIGMOD Internat. Conf. Management of Data, pp. 73-84.
-
-
-
-
13
-
-
0034228041
-
ROCK: A robust clustering algorithm for categorical attributes
-
Guha S., Rastogi R., and Shim K. ROCK: A robust clustering algorithm for categorical attributes. Inform. Systems 25 5 (2000) 345-366
-
(2000)
Inform. Systems
, vol.25
, Issue.5
, pp. 345-366
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
15
-
-
43249116682
-
-
Hinneburg, A., Keim, D., 1999. Optimal grid-clustering: Toward breaking the curse of dimensionality in high-dimensional clustering. In: Proc. 25th VLDB Conf., pp. 506-517.
-
Hinneburg, A., Keim, D., 1999. Optimal grid-clustering: Toward breaking the curse of dimensionality in high-dimensional clustering. In: Proc. 25th VLDB Conf., pp. 506-517.
-
-
-
-
17
-
-
33750527085
-
Information cut for clustering using a gradient decent approach
-
Jenssen R., Erdogmus D., Hild K., et al. Information cut for clustering using a gradient decent approach. Pattern Recognition 40 3 (2007) 796-806
-
(2007)
Pattern Recognition
, vol.40
, Issue.3
, pp. 796-806
-
-
Jenssen, R.1
Erdogmus, D.2
Hild, K.3
-
18
-
-
22944453351
-
Cluster validity in high-dimensional datasets
-
Kim M., Yoo H., and Ramakrishn R.S. Cluster validity in high-dimensional datasets. LNAI 3192 (2004) 178-187
-
(2004)
LNAI
, vol.3192
, pp. 178-187
-
-
Kim, M.1
Yoo, H.2
Ramakrishn, R.S.3
-
19
-
-
4344647570
-
Efficient disk-based K-means clustering for relational databases
-
Ordonez C., and Omiecinski E. Efficient disk-based K-means clustering for relational databases. IEEE Trans. Knowl. Data Eng. 16 8 (2004) 909-921
-
(2004)
IEEE Trans. Knowl. Data Eng.
, vol.16
, Issue.8
, pp. 909-921
-
-
Ordonez, C.1
Omiecinski, E.2
-
20
-
-
43249105582
-
-
Schikuta, E., 1993. Grid-Clustering: A hierarchical clustering method for very large data sets. In: Technical Report TR-CRPC No. 93358, Center for Research on Parallel Computation, Rice University, P.O. Box 1892, Houston, TX 77251-1892.
-
Schikuta, E., 1993. Grid-Clustering: A hierarchical clustering method for very large data sets. In: Technical Report TR-CRPC No. 93358, Center for Research on Parallel Computation, Rice University, P.O. Box 1892, Houston, TX 77251-1892.
-
-
-
-
21
-
-
43249112066
-
-
UCI Machine Learning Repository. .
-
UCI Machine Learning Repository. .
-
-
-
-
22
-
-
16444383160
-
Survey of clustering algorithm
-
Xu R., and Wunsch D. Survey of clustering algorithm. IEEE Trans. Neural Network 16 3 (2005) 645-661
-
(2005)
IEEE Trans. Neural Network
, vol.16
, Issue.3
, pp. 645-661
-
-
Xu, R.1
Wunsch, D.2
-
24
-
-
37249074851
-
A general c-means clustering approach
-
Yu J. A general c-means clustering approach. IEEE Trans. Pattern Anal. Machine Intell. 25 8 (2003) 944-952
-
(2003)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.25
, Issue.8
, pp. 944-952
-
-
Yu, J.1
-
25
-
-
0030157145
-
-
Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: An efficient data clustering method for very large databases. In: Proc. ACM SIGMOD Conf. Management of Data, pp. 103-114.
-
Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: An efficient data clustering method for very large databases. In: Proc. ACM SIGMOD Conf. Management of Data, pp. 103-114.
-
-
-
|