메뉴 건너뛰기




Volumn 18, Issue 3, 2014, Pages 389-408

Cluster ensemble selection based on a new cluster stability measure

Author keywords

APMM stability measure; cluster evaluation; Clustering ensemble; extended evidence accumulation clustering

Indexed keywords

CLUSTER EVALUATIONS; CLUSTERING ENSEMBLE; CO-ASSOCIATION MATRIX; CONSENSUS FUNCTIONS; EVALUATION APPROACH; EVIDENCE ACCUMULATION; NORMALIZED MUTUAL INFORMATION; STABILITY MEASURE;

EID: 84878290584     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-140647     Document Type: Article
Times cited : (67)

References (39)
  • 1
    • 36448962361 scopus 로고    scopus 로고
    • Cumulative voting consensus method for partitions with a variable number of clusters
    • pag 389-408
    • H.G. Ayad and M.S. Kamel, Cumulative Voting Consensus Method for Partitions with a Variable Number of Clusters, IEEE Trans. on Pattern Analysis and Machine Intelligence 30(1) (2008), 160-173 pag 389-408
    • (2008) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.30 , Issue.1 , pp. 160-173
    • Ayad, H.G.1    Kamel, M.S.2
  • 4
    • 0032432719 scopus 로고    scopus 로고
    • Simulation of extreme precipitation in the rhine basin by nearest-neighbour resampling
    • T. Brandsma and T.A. Buishand, Simulation of extreme precipitation in the Rhine basin by nearest-neighbour resampling, Hydrology and Earth System Sciences 2 (1998), 195-209.
    • (1998) Hydrology and Earth System Sciences , vol.2 , pp. 195-209
    • Brandsma, T.1    Buishand, T.A.2
  • 5
    • 0000642069 scopus 로고
    • Replicating cluster analysis: Method consistency and validity
    • J. Breckenridge, Replicating cluster analysis: Method, consistency and validity. Multivariate Behavioral research, 1989.
    • (1989) Multivariate Behavioral Research
    • Breckenridge, J.1
  • 8
    • 35248894964 scopus 로고    scopus 로고
    • Cluster validity using support vector machines
    • V. Estivill-Castro and J. Yang, Cluster Validity Using Support Vector Machines, DaWaK 2003, LNCS 2737, (2003), pp. 244-256.
    • (2003) DaWaK 2003, LNCS 2737 , pp. 244-256
    • Estivill-Castro, V.1    Yang, J.2
  • 14
    • 42449158528 scopus 로고    scopus 로고
    • Cluster ensemble methods from single clusterings to combined solutions
    • A. Fred and A. Lourenco, Cluster Ensemble Methods: from Single Clusterings to Combined Solutions, Studies in Computational Intelligence (SCI) 126 (2008), 3-30.
    • (2008) Studies in Computational Intelligence (SCI , vol.126 , pp. 3-30
    • Fred, A.1    Lourenco, A.2
  • 15
    • 0038082421 scopus 로고    scopus 로고
    • Applications of resampling methods to estimate the number of clusters and to improve the accuracy of a clustering method
    • J. Fridlyand and S. Dudoit, Applications of resampling methods to estimate the number of clusters and to improve the accuracy of a clustering method, Stat. Berkeley Tech Report. No. 600, 2001.
    • (2001) Stat. Berkeley Tech Report. , Issue.600
    • Fridlyand, J.1    Dudoit, S.2
  • 16
    • 34250760248 scopus 로고    scopus 로고
    • Kernelized cluster validity measures and application to evaluation of different clustering algorithms
    • Canada, 16-21 July
    • R. Inokuchi, T. Nakamura and S. Miyamoto, Kernelized Cluster Validity Measures and Application to Evaluation of Different Clustering Algorithms, IEEE Int. Conf. on Fuzzy Systems, Canada, 16-21 July 2006.
    • (2006) IEEE Int. Conf. on Fuzzy Systems
    • Inokuchi, R.1    Nakamura, T.2    Miyamoto, S.3
  • 18
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validat ion of clustering solutions
    • T. Lange, V. Roth,M.L. Braun and J.M. Buhmann, Stability-based validat ion of clustering solutions, Neural Computation 16(6) (2004), 1299-1323.
    • (2004) Neural Computation , vol.16 , Issue.6 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.L.3    Buhmann, J.M.4
  • 20
    • 34047236380 scopus 로고    scopus 로고
    • Performance of data resampling methods based on clustering
    • U. Möller and D. Radke, Performance of data resampling methods based on clustering, Intelligent Data Analysis 10(2) (2006).
    • (2006) Intelligent Data Analysis , vol.10 , pp. 2
    • Möller, U.1    Radke, D.2
  • 24
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles -A knowledge reuse framework for combining multiple partitions
    • Dec
    • A. Strehl and J. Ghosh, Cluster ensembles -A knowledge reuse framework for combining multiple partitions, Journal of Machine Learning Research 3 (Dec 2002), 583-617.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 34
    • 80053039117 scopus 로고    scopus 로고
    • Cluster ensembles. Wiley interdisciplinary reviews
    • J. Ghosh and A. Acharya, Cluster ensembles. Wiley interdisciplinary reviews, Data Min Knowl Disc 1(4) (2011), 305-315.
    • (2011) Data Min Knowl Disc , vol.1 , Issue.4 , pp. 305-315
    • Ghosh, J.1    Acharya, A.2
  • 35
    • 77956193730 scopus 로고    scopus 로고
    • Adaptive cluster ensemble selection
    • J. Azimi and X. Fern, Adaptive Cluster Ensemble Selection, IJCAI (9) (2009), 992-997.
    • (2009) IJCAI , vol.9 , pp. 992-997
    • Azimi, J.1    Fern, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.