메뉴 건너뛰기




Volumn 91, Issue 6, 2013, Pages 1071-1084

Reconstruction in integrating fault spaces for fault identification with kernel independent component analysis

Author keywords

Cyanide leaching; Fault identification; Integrating fault space; Kernel independent component analysis (KICA); Reconstruction

Indexed keywords

CYANIDE LEACHING; FAULT DETECTION AND IDENTIFICATION; FAULT IDENTIFICATIONS; FAULT SPACE; INDUSTRIAL PROCESSS; KERNEL INDEPENDENT COMPONENT ANALYSIS; NONLINEAR AND NON-GAUSSIAN; RECONSTRUCTION METHOD;

EID: 84878194811     PISSN: 02638762     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cherd.2012.11.013     Document Type: Article
Times cited : (20)

References (31)
  • 1
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • Alcala C.F., Qin S.J. Reconstruction-based contribution for process monitoring. Automatica 2009, 45:1593-1600.
    • (2009) Automatica , vol.45 , pp. 1593-1600
    • Alcala, C.F.1    Qin, S.J.2
  • 2
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • Alcala C.F., Qin S.J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Ind. Eng. Chem. Res. 2010, 49:7849-7857.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 7849-7857
    • Alcala, C.F.1    Qin, S.J.2
  • 3
    • 0032049479 scopus 로고    scopus 로고
    • Joint diagnosis of process and sensor faults using principal component analysis
    • Dunia R., Qin S.J. Joint diagnosis of process and sensor faults using principal component analysis. Control Eng. Pract. 1998, 6:457-469.
    • (1998) Control Eng. Pract. , vol.6 , pp. 457-469
    • Dunia, R.1    Qin, S.J.2
  • 4
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • Dunia R., Qin S.J. Subspace approach to multidimensional fault identification and reconstruction. AIChE J. 1998, 44:1813-1831.
    • (1998) AIChE J. , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 5
    • 0031644999 scopus 로고    scopus 로고
    • A unified geometric approach to process and sensor fault identification and reconstruction: the unidimensional fault case
    • Dunia R., Qin S.J. A unified geometric approach to process and sensor fault identification and reconstruction: the unidimensional fault case. Comput. Chem. Eng. 1998, 22:927-943.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 927-943
    • Dunia, R.1    Qin, S.J.2
  • 6
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia R., Qin S.J., Edgar T.F., McAvoy T.J. Identification of faulty sensors using principal component analysis. AIChE J. 1996, 42:2797-2812.
    • (1996) AIChE J. , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 7
    • 0020717739 scopus 로고
    • The mineralogy of gold and its significance in metal extraction
    • Gasparrini C. The mineralogy of gold and its significance in metal extraction. Can. Min. Metall. Bull. 1983, 76:144-153.
    • (1983) Can. Min. Metall. Bull. , vol.76 , pp. 144-153
    • Gasparrini, C.1
  • 8
    • 77951529123 scopus 로고    scopus 로고
    • Two-level multiblock statistical monitoring for plant-wide processes
    • Ge Z., Song Z. Two-level multiblock statistical monitoring for plant-wide processes. Korean J. Chem. Eng. 2009, 26:1467-1475.
    • (2009) Korean J. Chem. Eng. , vol.26 , pp. 1467-1475
    • Ge, Z.1    Song, Z.2
  • 10
    • 79959815395 scopus 로고    scopus 로고
    • Fault localization in batch processes through progressive principal component analysis modeling
    • Hong J.J., Zhang J., Morris J. Fault localization in batch processes through progressive principal component analysis modeling. Ind. Eng. Chem. Res. 2011, 50:8153-8162.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 8153-8162
    • Hong, J.J.1    Zhang, J.2    Morris, J.3
  • 11
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvärinen A., Oja E. Independent component analysis: algorithms and applications. Neural Networks 2000, 13:411-430.
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 12
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 1999, 10:626-634.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626-634
    • Hyvarinen, A.1
  • 13
    • 0000588327 scopus 로고    scopus 로고
    • Non-linear principal components analysis for process fault detection
    • Jia F., Martin E.B., Morris A.J. Non-linear principal components analysis for process fault detection. Comput. Chem. Eng. 1998, 22(Suppl. 1):S851-S854.
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.SUPPL. 1
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 14
    • 84864408795 scopus 로고    scopus 로고
    • The optimization of the kind and parameters of kernel function in kPCA for process monitoring
    • Jia M., Xu H., Liu X., Wang N. The optimization of the kind and parameters of kernel function in kPCA for process monitoring. Comput. Chem. Eng. 2012, 10.1016/j.compchemeng.2012.06.023.
    • (2012) Comput. Chem. Eng.
    • Jia, M.1    Xu, H.2    Liu, X.3    Wang, N.4
  • 15
    • 1942468131 scopus 로고    scopus 로고
    • Evolution of multivariate statistical process control: application of independent component analysis and external analysis
    • Kano M., Hasebe S., Hashimoto I., Ohno H. Evolution of multivariate statistical process control: application of independent component analysis and external analysis. Comput. Chem. Eng. 2004, 28:1157-1166.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1157-1166
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 16
    • 84943249600 scopus 로고    scopus 로고
    • Fast independent component analysis in kernel feature spaces
    • Kocsor A., Csirik J. Fast independent component analysis in kernel feature spaces. Theor. Pract. Inform. 2001, 2234:271-281.
    • (2001) Theor. Pract. Inform. , vol.2234 , pp. 271-281
    • Kocsor, A.1    Csirik, J.2
  • 17
    • 0035868948 scopus 로고    scopus 로고
    • Integration of multivariate SPM and FDD by parity space technique for a food pasteurization process
    • Kosebalaban F., Cinar A. Integration of multivariate SPM and FDD by parity space technique for a food pasteurization process. Comput. Chem. Eng. 2001, 25:473-491.
    • (2001) Comput. Chem. Eng. , vol.25 , pp. 473-491
    • Kosebalaban, F.1    Cinar, A.2
  • 18
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006, 52:3501-3514.
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 19
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • Lee J.M., Qin S.J., Lee I.B. Fault detection of non-linear processes using kernel independent component analysis. Can. J. Chem. Eng. 2007, 85:526-536.
    • (2007) Can. J. Chem. Eng. , vol.85 , pp. 526-536
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 20
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C.K., Lee I.B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 21
    • 0001606671 scopus 로고    scopus 로고
    • Contribution plots: a missing link in multivariate quality control
    • Miller P., Swanson R., Heckler C.E. Contribution plots: a missing link in multivariate quality control. Appl. Math. Comput. Sci. 1998, 8:775-792.
    • (1998) Appl. Math. Comput. Sci. , vol.8 , pp. 775-792
    • Miller, P.1    Swanson, R.2    Heckler, C.E.3
  • 22
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. J. Chemometr. 2003, 17:480-502.
    • (2003) J. Chemometr. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 23
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., Müller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 25
    • 34249106480 scopus 로고    scopus 로고
    • A study on the number of principal components and sensitivity of fault detection using PCA
    • Tamura M., Tsujita S. A study on the number of principal components and sensitivity of fault detection using PCA. Comput. Chem. Eng. 2007, 31:1035-1046.
    • (2007) Comput. Chem. Eng. , vol.31 , pp. 1035-1046
    • Tamura, M.1    Tsujita, S.2
  • 26
    • 77951299089 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring using an improved independent component analysis
    • Wang L., Shi H. Multivariate statistical process monitoring using an improved independent component analysis. Chem. Eng. Res. Des. 2010, 88:403-414.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 403-414
    • Wang, L.1    Shi, H.2
  • 27
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • Westerhuis J.A., Gurden S.P., Smilde A.K. Generalized contribution plots in multivariate statistical process monitoring. Chemometr. Intell. Lab. 2000, 51:95-114.
    • (2000) Chemometr. Intell. Lab. , vol.51 , pp. 95-114
    • Westerhuis, J.A.1    Gurden, S.P.2    Smilde, A.K.3
  • 28
    • 22844447009 scopus 로고    scopus 로고
    • Kernel ICA: an alternative formulation and its application to face recognition
    • Yang J., Gao X., Zhang D. Kernel ICA: an alternative formulation and its application to face recognition. Pattern Recogn. 2005, 38:1784-1787.
    • (2005) Pattern Recogn. , vol.38 , pp. 1784-1787
    • Yang, J.1    Gao, X.2    Zhang, D.3
  • 29
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
    • Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. J. Process Control 2001, 11:387-400.
    • (2001) J. Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 30
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H.H., Qin S.J. Reconstruction-based fault identification using a combined index. Ind. Eng. Chem. Res. 2001, 40:4403-4414.
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 31
    • 84860444038 scopus 로고    scopus 로고
    • Decentralized fault diagnosis using multiblock kernel independent component analysis
    • Zhang Y., Ma C. Decentralized fault diagnosis using multiblock kernel independent component analysis. Chem. Eng. Res. Des. 2012, 90:667-676.
    • (2012) Chem. Eng. Res. Des. , vol.90 , pp. 667-676
    • Zhang, Y.1    Ma, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.