-
1
-
-
34848894514
-
A simple growth model constructs critical avalanche net- works
-
L. F. Abbott and R. Rohrkemper, A simple growth model constructs critical avalanche net- works, Prog. in Brain Res., 165 (2007), 13-19.
-
(2007)
Prog. in Brain Res.
, vol.165
, pp. 13-19
-
-
Abbott, L.F.1
Rohrkemper, R.2
-
2
-
-
0036013593
-
Statistical mechanics of complex networks
-
R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Modern Phys., 74 (2002), 47-97.
-
(2002)
Rev. Modern Phys.
, vol.74
, pp. 47-97
-
-
Albert, R.1
Barabási, A.-L.2
-
3
-
-
0034633749
-
Classes of small-world networks
-
L. A. N. Amaral, A. Scala, M. Barthelemy and H. E. Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci., 97 (2000), 11149-11152.
-
(2000)
Proc. Natl. Acad. Sci.
, vol.97
, pp. 11149-11152
-
-
Amaral, L.A.N.1
Scala, A.2
Barthelemy, M.3
Stanley, H.E.4
-
4
-
-
0036789265
-
Analyzing yeast protein-protein interaction data obtained from different sources
-
G. D. Bader and C. W. V. Hogue Analyzing yeast protein-protein interaction data obtained from different sources, Nat. Biotechnol., 20 (2002), 991-997 .
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 991-997
-
-
Bader, G.D.1
Hogue, C.W.V.2
-
5
-
-
33846696533
-
Bootstrap percolation on the random regular graph
-
J. Balogh and B. G. Pittel, Bootstrap percolation on the random regular graph, Random Struct. Algor., 30 (2007), 257-286.
-
(2007)
Random Struct. Algor.
, vol.30
, pp. 257-286
-
-
Balogh, J.1
Pittel, B.G.2
-
6
-
-
0038483826
-
Emergence of scaling random networks
-
A.-L. Barabási and R. Albert, Emergence of Scaling in Random Networks, Science, 286 (1999), 509-512.
-
(1999)
Science
, vol.286
, pp. 509-512
-
-
Barabási, A.-L.1
Albert, R.2
-
7
-
-
0348010295
-
Neuronal avalanches in neocortical circuits
-
J. M. Beggs and D. Plenz, Neuronal avalanches in neocortical circuits, J. of Neurosci., 23 (2003), 11167-11177.
-
(2003)
J. of Neurosci.
, vol.23
, pp. 11167-11177
-
-
Beggs, J.M.1
Plenz, D.2
-
8
-
-
78149385343
-
-
WSEAS Press
-
J. Best, Doubly Stochastic Processes: an Approach for Understanding Central Nervous System Activity, Selected Topics on Applied Mathematics, Circuits, Systems, and Signals; WSEAS Press, (2009), 155-158.
-
(2009)
Doubly Stochastic Processes: An Approach for Understanding Central Nervous System Activity, Selected Topics on Applied Mathematics, Circuits, Systems, and Signals
, pp. 155-158
-
-
Best, J.1
-
9
-
-
43349094507
-
The igraph software package for complex network research
-
G. Csardi and T. Nepusz, The igraph software package for complex network research, Inter- Journal, Complex Systems 1695 (2006), http://igraph.sf.net.
-
(2006)
Inter- Journal, Complex Systems
, vol.1695
-
-
Csardi, G.1
Nepusz, T.2
-
12
-
-
0017030517
-
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
-
D. T. Gillespie, A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions, J. Comput. Phys., 22 (1976), 403-434.
-
(1976)
J. Comput. Phys.
, vol.22
, pp. 403-434
-
-
Gillespie, D.T.1
-
14
-
-
18144382578
-
Critical branching captures activity in living neural networks and maximizes the number of metastable states
-
C. Haldeman and J. M. Beggs, Critical branching captures activity in living neural networks and maximizes the number of metastable states Phys. Rev. Lett., 94 (2005), 058101.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 058101
-
-
Haldeman, C.1
Beggs, J.M.2
-
15
-
-
0024520759
-
Long-term depression
-
M. Ito, Long-term depression, Ann. Rev. Neurosci., 12 (1989), 85-102.
-
(1989)
Ann. Rev. Neurosci.
, vol.12
, pp. 85-102
-
-
Ito, M.1
-
19
-
-
0035420732
-
Random graphs with arbitrary degree distributions and their applications
-
M. E. J. Newman, S. H. Strogatz and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64 (2001), 026118.
-
(2001)
Phys. Rev. e
, vol.64
, pp. 026118
-
-
Newman, M.E.J.1
Strogatz, S.H.2
Watts, D.J.3
-
20
-
-
33846672214
-
Biological network comparison using graphlet degree distribution
-
Nataša Pržulj Biological network comparison using graphlet degree distribution, Bioinformatics, 23 (2006), 177-183.
-
(2006)
Bioinformatics
, vol.23
, pp. 177-183
-
-
Pržulj, N.1
-
21
-
-
85036788482
-
A language and environment for statistical computing
-
R Development Core Team R, Vienna, Austria. ISBN 3-900051-07-0
-
R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. (2009), ISBN 3-900051-07-0, http://www.R-project.org.
-
(2009)
R Foundation for Statistical Computing
-
-
-
22
-
-
79051470045
-
Architectural and functional connectivity in scale-free integrate-and-fire networks
-
M. S. Shkarayev, G. Kovačič, A. V. Rangan and D. Cai, Architectural and functional connectivity in scale-free integrate-and-fire networks, EPL-Europhys. Lett., 88 (2009), 50001.
-
(2009)
EPL-Europhys. Lett.
, vol.88
, pp. 50001
-
-
Shkarayev, M.S.1
Kovačič, G.2
Rangan, A.V.3
Cai, D.4
-
23
-
-
84878207686
-
-
M. S. Shkarayev and G. Kovačič, Unpublished
-
M. S. Shkarayev and G. Kovačič, Unpublished.
-
-
-
-
24
-
-
34249894467
-
Local cortical circuit model inferred from power-law distributed neuronal avalanches
-
J. Teramae and T. Fukai, Local cortical circuit model inferred from power-law distributed neuronal avalanches, J. Comput. Neurosci., 22 (2007), 301-312.
-
(2007)
J. Comput. Neurosci.
, vol.22
, pp. 301-312
-
-
Teramae, J.1
Fukai, T.2
-
26
-
-
0032482432
-
Collective dynamics of small-world networks
-
D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442.
-
(1998)
Nature
, vol.393
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
-
27
-
-
0030932272
-
A general model for the origin of allometric scaling laws in biology
-
G. B. West, J. H. Brown and B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 276 (1997), 122-126.
-
(1997)
Science
, vol.276
, pp. 122-126
-
-
West, G.B.1
Brown, J.H.2
Enquist, B.J.3
-
28
-
-
0042474344
-
Self-organized branching process: Mean-field theory for avalanches
-
S. Zapperi, K. B. Lauritsen and H. E. Stanley Self-organized branching process: mean-field theory for avalanches, Phys. Rev. Lett., 75 (1995), 4071-4074.
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 4071-4074
-
-
Zapperi, S.1
Lauritsen, K.B.2
Stanley, H.E.3
|