메뉴 건너뛰기




Volumn 1, Issue 3, 2012, Pages 347-361

Integrated solar thermochemical cycles for energy storage and fuel production

Author keywords

[No Author keywords available]

Indexed keywords

CONCENTRATED SOLAR ENERGY; CONCENTRATING SOLAR POWER; CONTROL TECHNOLOGIES; ELEVATED TEMPERATURE; ENDOTHERMIC CHEMICAL REACTIONS; INTERMEDIATE STORAGE; PROCESS TECHNOLOGIES; THERMOCHEMICAL CYCLES;

EID: 84877802157     PISSN: 20418396     EISSN: 2041840X     Source Type: Journal    
DOI: 10.1002/wene.11     Document Type: Review
Times cited : (18)

References (147)
  • 1
    • 0003652045 scopus 로고    scopus 로고
    • World Energy Council, UNDP, and UN-DESA. New York: United Nations; .
    • World Energy Council, UNDP, and UN-DESA. World Energy Assessment Report. New York: United Nations; 2000.
    • (2000) World Energy Assessment Report
  • 2
    • 0027235132 scopus 로고
    • Optimum aperture size and operating temperature of a solar cavity-receiver
    • Steinfeld A, Schubnell M. Optimum aperture size and operating temperature of a solar cavity-receiver. Solar Energy 1993, 50:19-25.
    • (1993) Solar Energy , vol.50 , pp. 19-25
    • Steinfeld, A.1    Schubnell, M.2
  • 3
    • 37049185786 scopus 로고
    • Hydrogen and oxygen from water
    • Fletcher EA, Moen RL. Hydrogen and oxygen from water. Science 1977, 197:1050-1056.
    • (1977) Science , vol.197 , pp. 1050-1056
    • Fletcher, E.A.1    Moen, R.L.2
  • 4
    • 0242364108 scopus 로고    scopus 로고
    • High-temperature solar chemistry for converting solar heat to chemical fuels
    • Kodama T. High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energy Combust Sci 2003, 29:567-597.
    • (2003) Prog Energy Combust Sci , vol.29 , pp. 567-597
    • Kodama, T.1
  • 5
    • 0031988579 scopus 로고    scopus 로고
    • Direct solar thermal splitting of water and on-site separation of the products-II. Experimental feasibility study
    • Kogan A. Direct solar thermal splitting of water and on-site separation of the products-II. Experimental feasibility study. Int J Hydrogen Energy 1998, 23:89-98.
    • (1998) Int J Hydrogen Energy , vol.23 , pp. 89-98
    • Kogan, A.1
  • 6
    • 0021120647 scopus 로고
    • Solar hydrogen production by direct water decomposition process: a preliminary engineering assessment
    • Bilgen E. Solar hydrogen production by direct water decomposition process: a preliminary engineering assessment. Int J Hydrogen Energy 1984, 9:53-58.
    • (1984) Int J Hydrogen Energy , vol.9 , pp. 53-58
    • Bilgen, E.1
  • 7
    • 0000571723 scopus 로고    scopus 로고
    • Direct solar thermal splitting of water and on site separation of the products I. Theoretical evaluation of hydrogen yield
    • Kogan A. Direct solar thermal splitting of water and on site separation of the products I. Theoretical evaluation of hydrogen yield. Int J Hydrogen Energy 1997, 22:481-486.
    • (1997) Int J Hydrogen Energy , vol.22 , pp. 481-486
    • Kogan, A.1
  • 8
    • 0034326235 scopus 로고    scopus 로고
    • Direct solar thermal splitting of water and on-site separation of the products-IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor
    • Kogan A. Direct solar thermal splitting of water and on-site separation of the products-IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor. Int J Hydrogen Energy 2000, 25:1043-1050.
    • (2000) Int J Hydrogen Energy , vol.25 , pp. 1043-1050
    • Kogan, A.1
  • 9
    • 0033750061 scopus 로고    scopus 로고
    • Direct solar thermal splitting of water and on-site separation of the products. III.: Improvement of reactor efficiency by steam entrainment
    • Kogan A, Spiegler E, Wolfshtein M. Direct solar thermal splitting of water and on-site separation of the products. III.: Improvement of reactor efficiency by steam entrainment. Int J Hydrogen Energy 2000, 25:739-745.
    • (2000) Int J Hydrogen Energy , vol.25 , pp. 739-745
    • Kogan, A.1    Spiegler, E.2    Wolfshtein, M.3
  • 11
    • 0019147588 scopus 로고
    • On the study of hydrogen production from water using solar thermal energy
    • Ihara S. On the study of hydrogen production from water using solar thermal energy. Int J Hydrogen Energy 1980, 5:527-534.
    • (1980) Int J Hydrogen Energy , vol.5 , pp. 527-534
    • Ihara, S.1
  • 12
    • 0033007977 scopus 로고    scopus 로고
    • Solarthermal and solar quasi-electrolytic processing and separations: zinc from zinc oxide as an example
    • Fletcher EA. Solarthermal and solar quasi-electrolytic processing and separations: zinc from zinc oxide as an example. Ind Eng Chem Res 1999, 38:2275-2282.
    • (1999) Ind Eng Chem Res , vol.38 , pp. 2275-2282
    • Fletcher, E.A.1
  • 16
    • 33747034764 scopus 로고    scopus 로고
    • Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy
    • Abanades S, Charvin P, Flamant G, Neveu P. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 2006, 31:2805-2822.
    • (2006) Energy , vol.31 , pp. 2805-2822
    • Abanades, S.1    Charvin, P.2    Flamant, G.3    Neveu, P.4
  • 18
    • 0032631845 scopus 로고    scopus 로고
    • Solar thermal chemical processing: challenges and changes
    • Pr3-35-Pr3-40
    • Palumbo R. Solar thermal chemical processing: challenges and changes. J Phys IV France 1999, 9:Pr3-35-Pr3-40.
    • (1999) J Phys IV France , vol.9
    • Palumbo, R.1
  • 20
    • 0032891240 scopus 로고    scopus 로고
    • Direct solar thermal dissociation of zinc oxide: condensation and crystallisation of zinc in the presence of oxygen
    • Weidenkaff A, Steinfeld A, Wokaun A, Auer P, Eichler B, Reller A. Direct solar thermal dissociation of zinc oxide: condensation and crystallisation of zinc in the presence of oxygen. Solar Energy 1999, 65:59-69.
    • (1999) Solar Energy , vol.65 , pp. 59-69
    • Weidenkaff, A.1    Steinfeld, A.2    Wokaun, A.3    Auer, P.4    Eichler, B.5    Reller, A.6
  • 22
    • 33646151156 scopus 로고    scopus 로고
    • Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s)
    • Müller R, Haeberling P, Palumbo RD. Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Solar Energy 2006, 80:500-511.
    • (2006) Solar Energy , vol.80 , pp. 500-511
    • Müller, R.1    Haeberling, P.2    Palumbo, R.D.3
  • 23
    • 50949118358 scopus 로고    scopus 로고
    • A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy
    • Melchior T, Perkins C, Weimer AW, Steinfeld A. A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. Int J Therm Sci 2008, 47:1496-1503.
    • (2008) Int J Therm Sci , vol.47 , pp. 1496-1503
    • Melchior, T.1    Perkins, C.2    Weimer, A.W.3    Steinfeld, A.4
  • 25
    • 65649119761 scopus 로고    scopus 로고
    • Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-experimental validation at 10 kW and scale-up to 1 MW
    • Schunk LO, Lipinski W, Steinfeld A. Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-experimental validation at 10 kW and scale-up to 1 MW. Chem Eng J 2009, 150:502-508.
    • (2009) Chem Eng J , vol.150 , pp. 502-508
    • Schunk, L.O.1    Lipinski, W.2    Steinfeld, A.3
  • 26
    • 2942627356 scopus 로고    scopus 로고
    • Solar thermal decomposition of zinc oxide: an initial investigation of the recombination reaction in the temperature range 1100-1250 K
    • Keunecke M, Meier A, Palumbo R. Solar thermal decomposition of zinc oxide: an initial investigation of the recombination reaction in the temperature range 1100-1250 K. Chem Eng Sci 2004, 59:2695-2704.
    • (2004) Chem Eng Sci , vol.59 , pp. 2695-2704
    • Keunecke, M.1    Meier, A.2    Palumbo, R.3
  • 27
    • 1342332316 scopus 로고    scopus 로고
    • Reflections on the design of solar thermal chemical reactors: thoughts in transformation
    • Palumbo R, Keunecke M, Möller S, Steinfeld A. Reflections on the design of solar thermal chemical reactors: thoughts in transformation. Energy 2004, 29:727-744.
    • (2004) Energy , vol.29 , pp. 727-744
    • Palumbo, R.1    Keunecke, M.2    Möller, S.3    Steinfeld, A.4
  • 28
    • 38349193784 scopus 로고    scopus 로고
    • Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO
    • Müller R, Lipinski W, Steinfeld A. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO. Appl Therm Eng 2008, 28:524-531.
    • (2008) Appl Therm Eng , vol.28 , pp. 524-531
    • Müller, R.1    Lipinski, W.2    Steinfeld, A.3
  • 29
    • 0036591726 scopus 로고    scopus 로고
    • Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions
    • Steinfeld A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 2002, 27:611-619.
    • (2002) Int J Hydrogen Energy , vol.27 , pp. 611-619
    • Steinfeld, A.1
  • 30
    • 0035822996 scopus 로고    scopus 로고
    • Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 K
    • Möller S, Palumbo R, Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 K. Chem Eng Sci 2001, 56:4505-4515.
    • (2001) Chem Eng Sci , vol.56 , pp. 4505-4515
    • Möller, S.1    Palumbo, R.2
  • 31
    • 29144465631 scopus 로고    scopus 로고
    • In situ formation and hydrolysis of Zn nanoparticles for H2 production by the 2-step ZnO/Zn water-splitting thermochemical cycle
    • Wegner K, Ly HC, Weiss RJ, Pratsinis SE, Steinfeld A. In situ formation and hydrolysis of Zn nanoparticles for H2 production by the 2-step ZnO/Zn water-splitting thermochemical cycle. Int J Hydrogen Energy 2006, 31:55-61.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 55-61
    • Wegner, K.1    Ly, H.C.2    Weiss, R.J.3    Pratsinis, S.E.4    Steinfeld, A.5
  • 32
    • 84877821961 scopus 로고    scopus 로고
    • Challenges in the thermochemical water-splitting cycle based on the ZnO/Zn redox pair: rapid quench and nucleation of zinc
    • O'Dowd CD, Wagner PE, eds. Netherlands: Springer;
    • Rütten F, Alxneit I, Tschudi HR. Challenges in the thermochemical water-splitting cycle based on the ZnO/Zn redox pair: rapid quench and nucleation of zinc. In: Nucleation and Atmospheric Aerosols. O'Dowd CD, Wagner PE, eds. Netherlands: Springer; 2007, 83-86.
    • (2007) Nucleation and Atmospheric Aerosols , pp. 83-86
    • Rütten, F.1    Alxneit, I.2    Tschudi, H.R.3
  • 33
    • 36048962808 scopus 로고    scopus 로고
    • 2O-splitting thermochemical cycle based on ZnO/Zn-redox: quenching the effluents from the ZnO dissociation
    • 2O-splitting thermochemical cycle based on ZnO/Zn-redox: quenching the effluents from the ZnO dissociation. Chem Eng Sci 2008, 63:217-227.
    • (2008) Chem Eng Sci , vol.63 , pp. 217-227
    • Müller, R.1    Steinfeld, A.2
  • 34
    • 84877817241 scopus 로고    scopus 로고
    • Entwicklung eines Reaktors zur solarthermischenHerstellung von Zink aus Zinkoxid zur Energiespeicherungmit Hilfe konzentrierte Sonnenstrahlung
    • Möller S. Entwicklung eines Reaktors zur solarthermischenHerstellung von Zink aus Zinkoxid zur Energiespeicherungmit Hilfe konzentrierte Sonnenstrahlung. ETH Zurich; 2001.
    • (2001) ETH Zurich
    • Möller, S.1
  • 35
    • 0035339412 scopus 로고    scopus 로고
    • Pulsed gas feeding for stoichiometric operation of a gas-solid vortex flow solar chemical reactor
    • Kraupl S, Steinfeld A. Pulsed gas feeding for stoichiometric operation of a gas-solid vortex flow solar chemical reactor. J Solar Energy Eng 2001, 123:133-137.
    • (2001) J Solar Energy Eng , vol.123 , pp. 133-137
    • Kraupl, S.1    Steinfeld, A.2
  • 36
    • 0033159968 scopus 로고    scopus 로고
    • The production of zinc by thermal dissociation of zinc oxide-solar chemical reactor design
    • Haueter P, Möller S, Palumbo R, Steinfeld A. The production of zinc by thermal dissociation of zinc oxide-solar chemical reactor design. Solar Energy 1999, 67:161-167.
    • (1999) Solar Energy , vol.67 , pp. 161-167
    • Haueter, P.1    Möller, S.2    Palumbo, R.3    Steinfeld, A.4
  • 37
    • 34548491007 scopus 로고    scopus 로고
    • Production of hydrogen from solar zinc in steam atmosphere
    • Vishnevetsky I, Epstein M. Production of hydrogen from solar zinc in steam atmosphere. Int J Hydrogen Energy 2007, 32:2791-2802.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 2791-2802
    • Vishnevetsky, I.1    Epstein, M.2
  • 39
    • 80052807141 scopus 로고    scopus 로고
    • 2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: thermodynamic cycle analysis
    • 2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: thermodynamic cycle analysis. Int J Hydrogen Energy, 2011, 36:12141-12147.
    • (2011) Int J Hydrogen Energy , vol.36 , pp. 12141-12147
    • Loutzenhiser, P.G.1    Steinfeld, A.2
  • 40
    • 63249105295 scopus 로고    scopus 로고
    • An ablation model for the thermal decomposition of porous zinc oxide layer heated by concentrated solar radiation
    • Dombrovsky L, Schunk L, Lipinski W, Steinfeld A. An ablation model for the thermal decomposition of porous zinc oxide layer heated by concentrated solar radiation. Int J Heat Mass Transfer 2009, 52:2444-2452.
    • (2009) Int J Heat Mass Transfer , vol.52 , pp. 2444-2452
    • Dombrovsky, L.1    Schunk, L.2    Lipinski, W.3    Steinfeld, A.4
  • 41
    • 0017574959 scopus 로고
    • Hydrogen production from water utilizing solar heat at high temperatures
    • Nakamura T. Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy 1977, 19:467-475.
    • (1977) Solar Energy , vol.19 , pp. 467-475
    • Nakamura, T.1
  • 42
    • 84877811921 scopus 로고
    • Contribution à l'étude de la decomposition des oxydes de fer au foyer d'un four solaire
    • Tofighi A. Contribution à l'étude de la decomposition des oxydes de fer au foyer d'un four solaire. L'institut national polytechnique de Toulouse; 1982.
    • (1982) L'institut national polytechnique de Toulouse
    • Tofighi, A.1
  • 44
    • 33947425167 scopus 로고    scopus 로고
    • Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production
    • Charvin P, Abanades S, Flamant G, Lemort F. Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy 2007, 32:1124-1133.
    • (2007) Energy , vol.32 , pp. 1124-1133
    • Charvin, P.1    Abanades, S.2    Flamant, G.3    Lemort, F.4
  • 45
    • 84877797128 scopus 로고    scopus 로고
    • Conversion of concentrated solar energy to chemical energy two step water splitting cycle with ni-ferrite/zirconia system
    • Conversion of concentrated solar energy to chemical energy two step water splitting cycle with ni-ferrite/zirconia system. Nippon Kagakkai Koen Yokoshu 2004, 84:361.
    • (2004) Nippon Kagakkai Koen Yokoshu , vol.84 , pp. 361
  • 46
    • 0029305092 scopus 로고
    • Comparative experimental investigations of the water-splitting reaction with iron-oxide Fe1-Yo and iron-manganese oxides (Fe1-Xmnx)(1-Y)O
    • Ehrensberger K, Frei A, Kuhn P, Oswald H, Hug P. Comparative experimental investigations of the water-splitting reaction with iron-oxide Fe1-Yo and iron-manganese oxides (Fe1-Xmnx)(1-Y)O. Solid State Ionics 1995, 78:151-160.
    • (1995) Solid State Ionics , vol.78 , pp. 151-160
    • Ehrensberger, K.1    Frei, A.2    Kuhn, P.3    Oswald, H.4    Hug, P.5
  • 48
    • 35848955627 scopus 로고    scopus 로고
    • Thermochemical cycles for high-temperature solar hydrogen production
    • Kodama T, Gokon N. Thermochemical cycles for high-temperature solar hydrogen production. Chem Rev 2007, 107:4048-4077.
    • (2007) Chem Rev , vol.107 , pp. 4048-4077
    • Kodama, T.1    Gokon, N.2
  • 49
    • 0029287655 scopus 로고
    • Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle
    • Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K. Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 1995, 20:325-330.
    • (1995) Energy , vol.20 , pp. 325-330
    • Tamaura, Y.1    Steinfeld, A.2    Kuhn, P.3    Ehrensberger, K.4
  • 51
    • 84877831007 scopus 로고    scopus 로고
    • Procédé et dispositif pour l'utilisation d'énergie thermique à haute température, en particulier d'origine nucléaire [Device and method for the use of high-temperature heat energy, in particular of nuclear origin]. French Patent FR2135421, 1972.
    • Souriau D. Procédé et dispositif pour l'utilisation d'énergie thermique à haute température, en particulier d'origine nucléaire [Device and method for the use of high-temperature heat energy, in particular of nuclear origin]. French Patent FR2135421, 1972.
    • Souriau, D.1
  • 53
    • 33751332963 scopus 로고    scopus 로고
    • Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides
    • Abanades S, Flamant G, Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Solar Energy 2006, 80:1611-1623.
    • (2006) Solar Energy , vol.80 , pp. 1611-1623
    • Abanades, S.1    Flamant, G.2
  • 56
    • 33646532115 scopus 로고    scopus 로고
    • Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production
    • Barbarossa V, Brutti S, Diamanti M, Sau S, De Maria G. Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production. Int J Hydrogen Energy 2006, 31:883-890.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 883-890
    • Barbarossa, V.1    Brutti, S.2    Diamanti, M.3    Sau, S.4    De Maria, G.5
  • 57
    • 77955179026 scopus 로고    scopus 로고
    • Solar thermochemical generation of hydrogen: development of a receiver reactor for the decomposition of sulfuric acid
    • Noglik A, Roeb M, Rzepczyk T, Hinkley J, Sattler C, Pitz-Paal R. Solar thermochemical generation of hydrogen: development of a receiver reactor for the decomposition of sulfuric acid. J Solar Energy Eng 2009, 131:011003.
    • (2009) J Solar Energy Eng , vol.131 , pp. 011003
    • Noglik, A.1    Roeb, M.2    Rzepczyk, T.3    Hinkley, J.4    Sattler, C.5    Pitz-Paal, R.6
  • 58
    • 9344230407 scopus 로고    scopus 로고
    • Likely near-term solar-thermal water splitting technologies
    • Perkins C, Weimer AW. Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 2004, 29:1587-1599.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 1587-1599
    • Perkins, C.1    Weimer, A.W.2
  • 59
    • 0024878905 scopus 로고
    • Economical and technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant
    • Aochi A, Tadokoro T, Yoshida K, Kameyama H, Nobue M, Yamaguchi T. Economical and technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant. Int J Hydrogen Energy 1989, 14:421-429.
    • (1989) Int J Hydrogen Energy , vol.14 , pp. 421-429
    • Aochi, A.1    Tadokoro, T.2    Yoshida, K.3    Kameyama, H.4    Nobue, M.5    Yamaguchi, T.6
  • 60
    • 0025628227 scopus 로고
    • A simulation study of the UT-3 thermochemical hydrogen production process
    • Yoshida K, et al. A simulation study of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 1990, 15:171-178.
    • (1990) Int J Hydrogen Energy , vol.15 , pp. 171-178
    • Yoshida, K.1
  • 61
    • 0026901887 scopus 로고
    • Test of one-loop flow scheme for the UT-3 thermochemical hydrogen production process
    • Sakurai M, Aihara M, Miyake N, Tsutsumi A, Yoshida K. Test of one-loop flow scheme for the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 1992, 17:587-592.
    • (1992) Int J Hydrogen Energy , vol.17 , pp. 587-592
    • Sakurai, M.1    Aihara, M.2    Miyake, N.3    Tsutsumi, A.4    Yoshida, K.5
  • 62
    • 0029285529 scopus 로고
    • Improvement of Ca-pellet reactivity in UT-3 thermochemical hydrogen production cycle
    • Sakurai M, Tsutsumi A, Yoshida K. Improvement of Ca-pellet reactivity in UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 1995, 20:297-301.
    • (1995) Int J Hydrogen Energy , vol.20 , pp. 297-301
    • Sakurai, M.1    Tsutsumi, A.2    Yoshida, K.3
  • 64
    • 0030270145 scopus 로고    scopus 로고
    • Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle
    • Sakurai M, Miyake N, Tsutsumi A, Yoshida K. Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 1996, 21:871-875.
    • (1996) Int J Hydrogen Energy , vol.21 , pp. 871-875
    • Sakurai, M.1    Miyake, N.2    Tsutsumi, A.3    Yoshida, K.4
  • 66
    • 13544272577 scopus 로고    scopus 로고
    • A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle
    • Teo ED, Brandon NP, Vos E, Kramer GJ. A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle. Int J Hydrogen Energy 2005, 30:559-564.
    • (2005) Int J Hydrogen Energy , vol.30 , pp. 559-564
    • Teo, E.D.1    Brandon, N.P.2    Vos, E.3    Kramer, G.J.4
  • 67
    • 0022952997 scopus 로고
    • A decade of research on thermochemical hydrogen at the Joint Research Centre, Ispra
    • Beghi GE. A decade of research on thermochemical hydrogen at the Joint Research Centre, Ispra. Int J Hydrogen Energy 1986, 11:761-771.
    • (1986) Int J Hydrogen Energy , vol.11 , pp. 761-771
    • Beghi, G.E.1
  • 68
    • 0018925365 scopus 로고
    • A heat penalty and economic analysis of the hybrid sulfuric acid process
    • Carty RH, Conger WL. A heat penalty and economic analysis of the hybrid sulfuric acid process. Int J Hydrogen Energy 1980, 5:7-20.
    • (1980) Int J Hydrogen Energy , vol.5 , pp. 7-20
    • Carty, R.H.1    Conger, W.L.2
  • 69
    • 0021056390 scopus 로고
    • Technological aspects of sulfur dioxide depolarized electrolysis for hydrogen production
    • Lu PWT. Technological aspects of sulfur dioxide depolarized electrolysis for hydrogen production. Int J Hydrogen Energy 1983, 8:773-781.
    • (1983) Int J Hydrogen Energy , vol.8 , pp. 773-781
    • Lu, P.W.T.1
  • 70
    • 33845766150 scopus 로고
    • Thermochemical processes for water splitting-status and outlook
    • Weirich W, Knoche KF, Behr F, Barnert H. Thermochemical processes for water splitting-status and outlook. Nuclear Eng Design 1984, 78:285-291.
    • (1984) Nuclear Eng Design , vol.78 , pp. 285-291
    • Weirich, W.1    Knoche, K.F.2    Behr, F.3    Barnert, H.4
  • 71
    • 0022488261 scopus 로고
    • A hybrid thermochemical hydrogen producing process based on the Cristina-Mark cycles
    • Bilgen E, Bilgen C. A hybrid thermochemical hydrogen producing process based on the Cristina-Mark cycles. Int J Hydrogen Energy 1986, 11:241-255.
    • (1986) Int J Hydrogen Energy , vol.11 , pp. 241-255
    • Bilgen, E.1    Bilgen, C.2
  • 72
    • 34249982900 scopus 로고    scopus 로고
    • HYTHEC: an EC funded search for a long term massive hydrogen production route using solar and nuclear technologies
    • Duigou AL, et al. HYTHEC: an EC funded search for a long term massive hydrogen production route using solar and nuclear technologies. Int J Hydrogen Energy 2007, 32:1516-1529.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 1516-1529
    • Duigou, A.L.1
  • 73
    • 0019482104 scopus 로고
    • A method for the techno-economic evaluation of chemical processes-improvements to the "OPTIMO" code
    • Broggi A, Joels R, Mertel G, Morbello M. A method for the techno-economic evaluation of chemical processes-improvements to the "OPTIMO" code. Int J Hydrogen Energy 1981, 6:25-44.
    • (1981) Int J Hydrogen Energy , vol.6 , pp. 25-44
    • Broggi, A.1    Joels, R.2    Mertel, G.3    Morbello, M.4
  • 74
    • 0021787680 scopus 로고
    • An assessment of solar hydrogen production using the Mark 13 hybrid process
    • Bilgen E, Joels RK. An assessment of solar hydrogen production using the Mark 13 hybrid process. Int J Hydrogen Energy 1985, 10:143-155.
    • (1985) Int J Hydrogen Energy , vol.10 , pp. 143-155
    • Bilgen, E.1    Joels, R.K.2
  • 75
    • 33748979156 scopus 로고    scopus 로고
    • Hydrogen production via the solar thermal decarbonization of fossil fuels
    • Zedtwitz Pv, Petrasch J, Trommer D, Steinfeld A. Hydrogen production via the solar thermal decarbonization of fossil fuels. Solar Energy 2006, 80:1333-1337.
    • (2006) Solar Energy , vol.80 , pp. 1333-1337
    • Zedtwitz, P.1    Petrasch, J.2    Trommer, D.3    Steinfeld, A.4
  • 76
    • 1342332318 scopus 로고    scopus 로고
    • Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor
    • Dahl JK, et al. Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor. Energy 2004, 29:715-725.
    • (2004) Energy , vol.29 , pp. 715-725
    • Dahl, J.K.1
  • 77
    • 36449009876 scopus 로고    scopus 로고
    • Production of hydrogen and carbon by solar thermal methane splitting, IV. Preliminary simulation of a confined tornado flow configuration by computational fluid dynamics
    • Kogan A, Israeli M, Alcobi E. Production of hydrogen and carbon by solar thermal methane splitting, IV. Preliminary simulation of a confined tornado flow configuration by computational fluid dynamics. Int J Hydrogen Energy 2007, 32:4800-4810.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 4800-4810
    • Kogan, A.1    Israeli, M.2    Alcobi, E.3
  • 78
    • 9444272934 scopus 로고    scopus 로고
    • Production of hydrogen and carbon by solar thermal methane splitting, III. Fluidization, entrainment and seeding powder particles into a volumetric solar receiver
    • Kogan A, Kogan M, Barak S. Production of hydrogen and carbon by solar thermal methane splitting, III. Fluidization, entrainment and seeding powder particles into a volumetric solar receiver. Int J Hydrogen Energy 2005, 30:35-43.
    • (2005) Int J Hydrogen Energy , vol.30 , pp. 35-43
    • Kogan, A.1    Kogan, M.2    Barak, S.3
  • 79
    • 2542419787 scopus 로고    scopus 로고
    • Production of hydrogen and carbon by solar thermal methane splitting, II. Room temperature simulation tests of seeded solar reactor
    • Kogan A, Kogan M, Barak S. Production of hydrogen and carbon by solar thermal methane splitting, II. Room temperature simulation tests of seeded solar reactor. Int J Hydrogen Energy 2004, 29:1227-1236.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 1227-1236
    • Kogan, A.1    Kogan, M.2    Barak, S.3
  • 80
  • 81
    • 9944257032 scopus 로고    scopus 로고
    • Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methane
    • Hirsch D, Steinfeld A. Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methane. Chem Eng Sci 2004, 59:5771-5778.
    • (2004) Chem Eng Sci , vol.59 , pp. 5771-5778
    • Hirsch, D.1    Steinfeld, A.2
  • 82
    • 33750181187 scopus 로고    scopus 로고
    • A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor
    • Dombrovsky LA, Lipinski W, Steinfeld A. A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor. J Quant Spectrosc Radiat Transfer 2007, 103:601-610.
    • (2007) J Quant Spectrosc Radiat Transfer , vol.103 , pp. 601-610
    • Dombrovsky, L.A.1    Lipinski, W.2    Steinfeld, A.3
  • 83
    • 68749095236 scopus 로고    scopus 로고
    • Particle-gas reacting flow under concentrated solar irradiation
    • In Press.
    • Maag G, Lipinski W, Steinfeld A. Particle-gas reacting flow under concentrated solar irradiation. Int J Heat and Mass Transfer 2009, 52:4997-5004. In Press.
    • (2009) Int J Heat and Mass Transfer , vol.52 , pp. 4997-5004
    • Maag, G.1    Lipinski, W.2    Steinfeld, A.3
  • 84
    • 0026414753 scopus 로고
    • Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project
    • Buck R, Muir JF, Hogan RE. Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project. Solar Energy Mater 1991, 24:449-463.
    • (1991) Solar Energy Mater , vol.24 , pp. 449-463
    • Buck, R.1    Muir, J.F.2    Hogan, R.E.3
  • 86
    • 84884892158 scopus 로고
    • Chemical reactions in a solar furnace by direct solar irradiation of the catalyst
    • Levy M, Rosin H, Levitan R. Chemical reactions in a solar furnace by direct solar irradiation of the catalyst. J Solar Energy Eng 1989, 111:96-97.
    • (1989) J Solar Energy Eng , vol.111 , pp. 96-97
    • Levy, M.1    Rosin, H.2    Levitan, R.3
  • 87
    • 0025434631 scopus 로고
    • Carbon dioxide reforming of methane with supported rhodium
    • Richardson JT, Paripatyadar SA. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal 1990, 61:293.
    • (1990) Appl. Catal , vol.61 , pp. 293
    • Richardson, J.T.1    Paripatyadar, S.A.2
  • 88
    • 0345998662 scopus 로고    scopus 로고
    • 2 reforming of methane in a solar driven volumetric receiver-reactor
    • 2 reforming of methane in a solar driven volumetric receiver-reactor. Catal Today 1998, 46:165-174.
    • (1998) Catal Today , vol.46 , pp. 165-174
    • Wörner, A.1    Tamme, R.2
  • 89
    • 38249009747 scopus 로고
    • Methane reforming by direct solar irradiation of the catalyst
    • Levy M, Rubin R, Rosin H, Levitan R. Methane reforming by direct solar irradiation of the catalyst. Energy (Oxford) 1992, 17:749-756.
    • (1992) Energy (Oxford) , vol.17 , pp. 749-756
    • Levy, M.1    Rubin, R.2    Rosin, H.3    Levitan, R.4
  • 91
    • 0034745944 scopus 로고    scopus 로고
    • 2 reforming of methane in a molten carbonate salt bath for use in solar thermochemical processes
    • 2 reforming of methane in a molten carbonate salt bath for use in solar thermochemical processes. Energy Fuels 2001, 15:60-65.
    • (2001) Energy Fuels , vol.15 , pp. 60-65
    • Kodama, T.1    Koyanagi, T.2    Shimizu, T.3    Kitayama, Y.4
  • 94
    • 0346720241 scopus 로고    scopus 로고
    • Solar production of syngas for electricity generation: SOLASYS project test-phase
    • Proc 11th Solar PACES Int Symp on Concentrated Solar Power and Chemical Energy Technologies, Zurich, Switzerland.
    • Möller S, Buck R, Tamme R, Epstein M, Liebermann D, Moshe Meri F, Rotstein A, Sugarmen C. Solar production of syngas for electricity generation: SOLASYS project test-phase. In: Proc 11th Solar PACES Int Symp on Concentrated Solar Power and Chemical Energy Technologies, Zurich, Switzerland. 2002, 231-237.
    • (2002) , pp. 231-237
    • Möller, S.1    Buck, R.2    Tamme, R.3    Epstein, M.4    Liebermann, D.5    Moshe, M.F.6    Rotstein, A.7    Sugarmen, C.8
  • 96
    • 33847109371 scopus 로고    scopus 로고
    • Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics
    • Petrasch J, Wyss P, Steinfeld A. Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J Quant Spectrosc Radiat Transfer 2007, 105:180-197.
    • (2007) J Quant Spectrosc Radiat Transfer , vol.105 , pp. 180-197
    • Petrasch, J.1    Wyss, P.2    Steinfeld, A.3
  • 97
    • 37549033809 scopus 로고    scopus 로고
    • Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics
    • Petrasch J, Meier F, Friess H, Steinfeld A. Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics. Int J Heat Fluid Flow 2008, 29:315-326.
    • (2008) Int J Heat Fluid Flow , vol.29 , pp. 315-326
    • Petrasch, J.1    Meier, F.2    Friess, H.3    Steinfeld, A.4
  • 98
    • 49649094987 scopus 로고    scopus 로고
    • Tomography-based multiscale analyses of the 3D geometrical morphology of reticulated porous ceramics
    • Petrasch J, Wyss P, Stämpfli R, Steinfeld A. Tomography-based multiscale analyses of the 3D geometrical morphology of reticulated porous ceramics. J Am Ceram Soc 2008, 91:2659-2665.
    • (2008) J Am Ceram Soc , vol.91 , pp. 2659-2665
    • Petrasch, J.1    Wyss, P.2    Stämpfli, R.3    Steinfeld, A.4
  • 99
    • 42649118095 scopus 로고    scopus 로고
    • Tomography-based determination of the effective thermal conductivity of fluid-saturated reticulate porous ceramics
    • Petrasch J, Schrader B, Wyss P, Steinfeld A. Tomography-based determination of the effective thermal conductivity of fluid-saturated reticulate porous ceramics. J Heat Transfer 2008, 130:032602.
    • (2008) J Heat Transfer , vol.130 , pp. 032602
    • Petrasch, J.1    Schrader, B.2    Wyss, P.3    Steinfeld, A.4
  • 100
    • 12344303196 scopus 로고    scopus 로고
    • Solar gasification of biomass: a molten salt pyrolysis study
    • Adinberg R, Epstein M, Karni J, Solar gasification of biomass: a molten salt pyrolysis study. J Solar Energy Eng 2004, 126:850-857.
    • (2004) J Solar Energy Eng , vol.126 , pp. 850-857
    • Adinberg, R.1    Epstein, M.2    Karni, J.3
  • 104
    • 33750385182 scopus 로고    scopus 로고
    • 2 reduction with coal using a reactive redox system of ferrite. In: Advances in Chemical Conversions for Mitigating Carbon Dioxide, Proc Fourth Int Conf on Carbon Dioxide Utilization
    • 2 reduction with coal using a reactive redox system of ferrite. In: Advances in Chemical Conversions for Mitigating Carbon Dioxide, Proc Fourth Int Conf on Carbon Dioxide Utilization. Stud Surf Sci Catal 1998, 114:383-386.
    • (1998) Stud Surf Sci Catal , vol.114 , pp. 383-386
    • Kodama, T.1    Aoki, A.2    Miura, S.3    Kitayama, Y.4
  • 105
    • 84917870681 scopus 로고
    • Solar energy for wood gasification
    • Lede J, Villermaux J. Solar energy for wood gasification. Recherche 1982, 13:786-788.
    • (1982) Recherche , vol.13 , pp. 786-788
    • Lede, J.1    Villermaux, J.2
  • 107
    • 33645720136 scopus 로고    scopus 로고
    • Hydrogen production by steam-gasification of petroleum coke using concentrated solar power-II Reactor design, testing, and modeling
    • Z'Graggen A, Haueter P, Trommer D, Romero M, de Jesus JC, Steinfeld A. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power-II Reactor design, testing, and modeling. Int J Hydrogen Energy 2006, 31:797-811.
    • (2006) Int J Hydrogen Energy , vol.31 , pp. 797-811
    • Z'Graggen, A.1    Haueter, P.2    Trommer, D.3    Romero, M.4    de Jesus, J.C.5    Steinfeld, A.6
  • 108
    • 34248682664 scopus 로고    scopus 로고
    • Hydrogen production by steam-gasification of petroleum coke using concentrated solar power-III. Reactor experimentation with slurry feeding
    • Z'Graggen A, Haueter P, Maag G, Vidal A, Romero M, Steinfeld A. Hydrogen production by steam-gasification of petroleum coke using concentrated solar power-III. Reactor experimentation with slurry feeding. Int J Hydrogen Energy 2007, 32:992-996.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 992-996
    • Z'Graggen, A.1    Haueter, P.2    Maag, G.3    Vidal, A.4    Romero, M.5    Steinfeld, A.6
  • 109
    • 64549113019 scopus 로고    scopus 로고
    • A review on transportation of heat energy over long distance: exploratory development
    • Ma Q, Luo L, Wang RZ, Sauce G, A review on transportation of heat energy over long distance: exploratory development. Renew Sustain Energy Rev 2009, 13:1532-1540.
    • (2009) Renew Sustain Energy Rev , vol.13 , pp. 1532-1540
    • Ma, Q.1    Luo, L.2    Wang, R.Z.3    Sauce, G.4
  • 111
    • 0016599564 scopus 로고
    • Experiments for combining nuclear heat with the methane steam-reforming process
    • Fedders H, Harth R, Höhlein B. Experiments for combining nuclear heat with the methane steam-reforming process. Nuclear Eng Design 1975, 34:119-127.
    • (1975) Nuclear Eng Design , vol.34 , pp. 119-127
    • Fedders, H.1    Harth, R.2    Höhlein, B.3
  • 112
    • 33750879962 scopus 로고
    • Operating a pilot plant circuit for energy transport with hydrogen-rich gas
    • Fedders H, Höhlein B. Operating a pilot plant circuit for energy transport with hydrogen-rich gas. Int J Hydrogen Energy 1982, 7:793-800.
    • (1982) Int J Hydrogen Energy , vol.7 , pp. 793-800
    • Fedders, H.1    Höhlein, B.2
  • 115
    • 0024873842 scopus 로고
    • Chemical reactions in a solar furnace-direct heating of the reactor in a tubular receiver
    • Levitan R, Rosin H, Levy M. Chemical reactions in a solar furnace-direct heating of the reactor in a tubular receiver. Solar Energy 1989, 42:267-272.
    • (1989) Solar Energy , vol.42 , pp. 267-272
    • Levitan, R.1    Rosin, H.2    Levy, M.3
  • 116
    • 0027539317 scopus 로고
    • Solar energy storage via a closed-loop chemical heat pipe
    • Levy M, Levitan R, Rosin H, Rubin R. Solar energy storage via a closed-loop chemical heat pipe. Solar Energy 1993, 50:179-189.
    • (1993) Solar Energy , vol.50 , pp. 179-189
    • Levy, M.1    Levitan, R.2    Rosin, H.3    Rubin, R.4
  • 117
    • 0028446887 scopus 로고
    • Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I-Test and analysis
    • Muir JF, Hogan RE Jr, Skocypec RD, Buck R. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I-Test and analysis. Solar Energy 1994, 52:467-477.
    • (1994) Solar Energy , vol.52 , pp. 467-477
    • Muir, J.F.1    Hogan Jr., R.E.2    Skocypec, R.D.3    Buck, R.4
  • 118
    • 0028449408 scopus 로고
    • Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: II-Modeling and analysis
    • Skocypec RD, Hogan Jr. RE, Muir JF. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: II-Modeling and analysis. Solar Energy 1994, 52:479-490.
    • (1994) Solar Energy , vol.52 , pp. 479-490
    • Skocypec, R.D.1    Hogan Jr., R.E.2    Muir, J.F.3
  • 119
    • 0001202311 scopus 로고    scopus 로고
    • The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat
    • Edwards JH, Do KT, Maitra AM, Schuck S, Fok W, Stein W. The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat. Energy Convers Manag 1996, 37:1339-1344.
    • (1996) Energy Convers Manag , vol.37 , pp. 1339-1344
    • Edwards, J.H.1    Do, K.T.2    Maitra, A.M.3    Schuck, S.4    Fok, W.5    Stein, W.6
  • 120
    • 0017440059 scopus 로고
    • Energy corradiation using the reversible ammonia reaction
    • Carden PO. Energy corradiation using the reversible ammonia reaction. Solar Energy 1977, 19:365-378.
    • (1977) Solar Energy , vol.19 , pp. 365-378
    • Carden, P.O.1
  • 121
    • 0033297132 scopus 로고    scopus 로고
    • Theoretical analysis and experimental results of a 1 kWchem ammonia synthesis reactor for a solar thermochemical energy storage system
    • Kreetz H, Lovegrove K. Theoretical analysis and experimental results of a 1 kWchem ammonia synthesis reactor for a solar thermochemical energy storage system. Solar energy 1999, 67:287-296.
    • (1999) Solar energy , vol.67 , pp. 287-296
    • Kreetz, H.1    Lovegrove, K.2
  • 122
    • 0036027329 scopus 로고    scopus 로고
    • Exergy analysis of an ammonia synthesis reactor in a solar thermochemical power system
    • Kreetz H, Lovegrove K. Exergy analysis of an ammonia synthesis reactor in a solar thermochemical power system. Solar Energy 2002, 73:187-194.
    • (2002) Solar Energy , vol.73 , pp. 187-194
    • Kreetz, H.1    Lovegrove, K.2
  • 123
    • 0030117077 scopus 로고    scopus 로고
    • Endothermic reactors for an ammonia based thermochemical solar energy storage and transport system
    • Lovegrove K, Luzzi A. Endothermic reactors for an ammonia based thermochemical solar energy storage and transport system. Solar energy 1996, 56:361-371.
    • (1996) Solar energy , vol.56 , pp. 361-371
    • Lovegrove, K.1    Luzzi, A.2
  • 124
    • 0345767370 scopus 로고    scopus 로고
    • Developing ammonia based thermochemical energy storage for dish power plants
    • Lovegrove K, Luzzi A, Soldiani I, Kreetz H. Developing ammonia based thermochemical energy storage for dish power plants. Solar Energy 2004, 76:331-337.
    • (2004) Solar Energy , vol.76 , pp. 331-337
    • Lovegrove, K.1    Luzzi, A.2    Soldiani, I.3    Kreetz, H.4
  • 125
    • 0033297133 scopus 로고    scopus 로고
    • A solar-driven ammonia-based thermochemical energy storage system
    • Lovegrove K, Luzzi A, Kreetz H. A solar-driven ammonia-based thermochemical energy storage system. Solar energy 1999, 67:309-316.
    • (1999) Solar energy , vol.67 , pp. 309-316
    • Lovegrove, K.1    Luzzi, A.2    Kreetz, H.3
  • 126
    • 0032641498 scopus 로고    scopus 로고
    • Exergy analysis of ammonia-based solar thermochemical power systems
    • Lovegrove K, Luzzi A, McCann M, Freitag O. Exergy analysis of ammonia-based solar thermochemical power systems. Solar Energy 1999, 66:103-116.
    • (1999) Solar Energy , vol.66 , pp. 103-116
    • Lovegrove, K.1    Luzzi, A.2    McCann, M.3    Freitag, O.4
  • 127
    • 0030940948 scopus 로고    scopus 로고
    • A solar thermochemical power plant using ammonia as an attractive option for greenhouse-gas abatement
    • Luzzi A, Lovegrove K. A solar thermochemical power plant using ammonia as an attractive option for greenhouse-gas abatement. Energy(Oxford) 1997, 22:317-325.
    • (1997) Energy(Oxford) , vol.22 , pp. 317-325
    • Luzzi, A.1    Lovegrove, K.2
  • 131
    • 0016508131 scopus 로고
    • Analysis of gas dissociation solar thermal power system
    • Chubb TA. Analysis of gas dissociation solar thermal power system. Solar Energy 1975, 17:129-136.
    • (1975) Solar Energy , vol.17 , pp. 129-136
    • Chubb, T.A.1
  • 132
    • 10444261074 scopus 로고    scopus 로고
    • Economic evaluation of the industrial solar production of lime
    • Meier A, Gremaud N, Steinfeld A. Economic evaluation of the industrial solar production of lime. Energy Convers Manag 2005, 46:905-926.
    • (2005) Energy Convers Manag , vol.46 , pp. 905-926
    • Meier, A.1    Gremaud, N.2    Steinfeld, A.3
  • 133
    • 33748971554 scopus 로고    scopus 로고
    • Solar chemical reactor technology for industrial production of lime
    • Meier A, Bonaldi E, Cella GM, Lipinski W, Wuillemin D. Solar chemical reactor technology for industrial production of lime. Solar Energy 2006, 80:1355-1362.
    • (2006) Solar Energy , vol.80 , pp. 1355-1362
    • Meier, A.1    Bonaldi, E.2    Cella, G.M.3    Lipinski, W.4    Wuillemin, D.5
  • 135
    • 0023828657 scopus 로고
    • Thermal decomposition of limestone and gypsum by solar energy
    • Salman O, Khraishi M. Thermal decomposition of limestone and gypsum by solar energy. Solar Energy 1988, 41:305-308.
    • (1988) Solar Energy , vol.41 , pp. 305-308
    • Salman, O.1    Khraishi, M.2
  • 136
    • 84877794748 scopus 로고    scopus 로고
    • 2 mitigation in the lime industry: replacing fossil fuels with concentrated solar energy
    • Proc 10th Int Lime Association Congress, Washington, DC, USA
    • 2 mitigation in the lime industry: replacing fossil fuels with concentrated solar energy. In: Proc 10th Int Lime Association Congress, Washington, DC, USA, 2002.
    • (2002)
    • Bonaldi, E.1    Cella, G.2    Lipinski, W.3    Palumbo, R.4    Steinfeld, A.5    Wuillemin, D.6
  • 137
    • 1342268468 scopus 로고    scopus 로고
    • Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime
    • Meier A, Bonaldi E, Cella GM, Lipinski W, Wuillemin D, Palumbo R. Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime. Energy 2004, 29:811-821.
    • (2004) Energy , vol.29 , pp. 811-821
    • Meier, A.1    Bonaldi, E.2    Cella, G.M.3    Lipinski, W.4    Wuillemin, D.5    Palumbo, R.6
  • 138
    • 24744440380 scopus 로고    scopus 로고
    • Multitube rotary kiln for the industrial solar production of lime
    • Meier A, Bonaldi E, Cella GM, Lipinski W. Multitube rotary kiln for the industrial solar production of lime. J Solar Energy Eng 2005, 127:386-395.
    • (2005) J Solar Energy Eng , vol.127 , pp. 386-395
    • Meier, A.1    Bonaldi, E.2    Cella, G.M.3    Lipinski, W.4
  • 139
    • 84877835799 scopus 로고
    • Metals, nitrides, carbides via solar carbothermal reduction of metal oxides
    • Murray J. Metals, nitrides, carbides via solar carbothermal reduction of metal oxides. Fuel Energy Abstr 1995, 36:362.
    • (1995) Fuel Energy Abstr , vol.36 , pp. 362
    • Murray, J.1
  • 141
    • 9944260837 scopus 로고    scopus 로고
    • Solar carbothermal reduction of ZnO: shrinking packed-bed reactor modeling and experimental validation
    • Osinga T, Olalde G, Steinfeld A. Solar carbothermal reduction of ZnO: shrinking packed-bed reactor modeling and experimental validation. Ind Eng Chem Res 2004, 43:7981-7988.
    • (2004) Ind Eng Chem Res , vol.43 , pp. 7981-7988
    • Osinga, T.1    Olalde, G.2    Steinfeld, A.3
  • 143
    • 1342289719 scopus 로고    scopus 로고
    • Experimental study of solar reactors for carboreduction of zinc oxide
    • Adinberg R, Epstein M. Experimental study of solar reactors for carboreduction of zinc oxide. Energy 2004, 29:757-769.
    • (2004) Energy , vol.29 , pp. 757-769
    • Adinberg, R.1    Epstein, M.2
  • 146
    • 1842477860 scopus 로고    scopus 로고
    • Hydrogen storage in solar produced single-walled carbon nanotubes
    • Luxembourg D, Flamant G, Guillot A, Laplaze D. Hydrogen storage in solar produced single-walled carbon nanotubes. Mater Sci Eng B 2004, 108:114-119.
    • (2004) Mater Sci Eng B , vol.108 , pp. 114-119
    • Luxembourg, D.1    Flamant, G.2    Guillot, A.3    Laplaze, D.4
  • 147
    • 6544280173 scopus 로고    scopus 로고
    • Solar thermal decomposition of hydrocarbons and carbon monoxide for the production of catalytic filamentous carbon
    • Meier A, Kirillov V, Kuvshinov G, Mogilnykh Y, Reller A, Steinfeld A, Weidenkaff A. Solar thermal decomposition of hydrocarbons and carbon monoxide for the production of catalytic filamentous carbon. Chem Eng Sci 1999, 54:3341-3348.
    • (1999) Chem Eng Sci , vol.54 , pp. 3341-3348
    • Meier, A.1    Kirillov, V.2    Kuvshinov, G.3    Mogilnykh, Y.4    Reller, A.5    Steinfeld, A.6    Weidenkaff, A.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.