메뉴 건너뛰기




Volumn 9780521192248, Issue , 2011, Pages 217-239

Distributed gibbs sampling for latent variable models

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; DISTRIBUTED COMPUTER SYSTEMS; EDUCATION; EQUIVALENCE CLASSES; HIDDEN MARKOV MODELS; INFERENCE ENGINES; MARKOV PROCESSES; STATISTICS;

EID: 84923510633     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781139042918.012     Document Type: Chapter
Times cited : (1)

References (42)
  • 3
    • 78649698593 scopus 로고    scopus 로고
    • Asynchronous Distributed Estimation of Topic Models for Document Analysis
    • Asuncion, A., Smyth, P., and Welling, M. 2011. Asynchronous Distributed Estimation of Topic Models for Document Analysis. Statistical Methodology, 8(1), 3-17.
    • (2011) Statistical Methodology , vol.8 , Issue.1 , pp. 3-17
    • Asuncion, A.1    Smyth, P.2    Welling, M.3
  • 15
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised Learning by Probabilistic Latent Semantic Analysis
    • Hofmann, T. 2001. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning, 42(1), 177-196.
    • (2001) Machine Learning , vol.42 , Issue.1 , pp. 177-196
    • Hofmann, T.1
  • 20
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive Image Features from Scale-Invariant Keypoints
    • Lowe, D. G. 2004. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 23
    • 49549096867 scopus 로고    scopus 로고
    • Parallelized Variational EM for Latent Dirichlet Allocation: An Experimental Evaluation of Speed and Scalability
    • Washington, DC: IEEE Computer Society
    • Nallapati, R., Cohen, W., and Lafferty, J. 2007. Parallelized Variational EM for Latent Dirichlet Allocation: An Experimental Evaluation of Speed and Scalability. Pages 349-354 of: Proceedings of the Seventh IEEE International Conference on Data Mining Workshops. Washington, DC: IEEE Computer Society.
    • (2007) Proceedings of the Seventh IEEE International Conference on Data Mining Workshops , pp. 349-354
    • Nallapati, R.1    Cohen, W.2    Lafferty, J.3
  • 29
    • 0034118493 scopus 로고    scopus 로고
    • Inference of Population Structure using Multilocus Genotype Data
    • Pritchard, J. K., Stephens, M., and Donnelly, P. 2000. Inference of Population Structure using Multilocus Genotype Data. Genetics, 155, 945-959.
    • (2000) Genetics , vol.155 , pp. 945-959
    • Pritchard, J.K.1    Stephens, M.2    Donnelly, P.3
  • 30
    • 0000800741 scopus 로고
    • A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
    • Rabiner, L. R. 1990. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Readings in Speech Recognition, 53(3), 267-296.
    • (1990) Readings in Speech Recognition , vol.53 , Issue.3 , pp. 267-296
    • Rabiner, L.R.1
  • 31
    • 0036489069 scopus 로고    scopus 로고
    • Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century
    • Scott, S. L. 2002. Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century. Journal of the American Statistical Association, 97(457), 337-352.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 337-352
    • Scott, S.L.1
  • 33
    • 0031568356 scopus 로고    scopus 로고
    • Probabilistic Independence Networks for Hidden Markov Probability Models
    • Smyth, P., Heckerman, D., and Jordan, M. I. 1997. Probabilistic Independence Networks for Hidden Markov Probability Models. Neural Computation, 9(2), 227-269.
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 227-269
    • Smyth, P.1    Heckerman, D.2    Jordan, M.I.3
  • 35
    • 84864061876 scopus 로고    scopus 로고
    • A Collapsed Variational Bayesian Inference Algorithm for Latent DIrichlet Allocation
    • Cambridge, MA: MIT Press
    • Teh, Y. W., Newman, D., and Welling, M. 2007. A Collapsed Variational Bayesian Inference Algorithm for Latent DIrichlet Allocation. Pages 1353-1360 of: Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 1353-1360
    • Teh, Y.W.1    Newman, D.2    Welling, M.3
  • 41
    • 79955691941 scopus 로고    scopus 로고
    • Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units
    • Yan, F., Xu, N., and Qi, Y. 2009. Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units. Pages 2134-2142 of: Advances in Neural Information Processing Systems 22.
    • (2009) Advances in Neural Information Processing Systems 22 , pp. 2134-2142
    • Yan, F.1    Xu, N.2    Qi, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.