메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1547-1555

Graphical Gaussian Vector for image categorization

Author keywords

[No Author keywords available]

Indexed keywords

BETTER PERFORMANCE; GAUSSIAN MARKOV RANDOM FIELD; IMAGE CATEGORIZATION; IMAGE REPRESENTATIONS; INFORMATION GEOMETRY; LINEAR CLASSIFIERS; SPATIAL RELATIONSHIPS; STATE-OF-THE-ART METHODS;

EID: 84877733204     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (29)
  • 2
    • 24644502276 scopus 로고    scopus 로고
    • Shape matching and object recognition using low distortion correspondence
    • A.C. Berg, T.L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondence. In CVPR, 2005.
    • (2005) CVPR
    • Berg, A.C.1    Berg, T.L.2    Malik, J.3
  • 3
    • 85162018819 scopus 로고    scopus 로고
    • Kernel descriptors for visual recognition
    • L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition. In NIPS, 2010.
    • (2010) NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 4
    • 51949090223 scopus 로고    scopus 로고
    • In defense of nearest-neighbor based image classification
    • O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In CVPR, 2008.
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 8
    • 84856655843 scopus 로고    scopus 로고
    • A graph-matching kernel for object categorization
    • O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object categorization. In ICCV, 2011.
    • (2011) ICCV
    • Duchenne, O.1    Joulin, A.2    Ponce, J.3
  • 10
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR, Workshop on GMBV, 2004.
    • (2004) CVPR, Workshop on GMBV
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 11
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In CVPR, 2003.
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 12
    • 33750397657 scopus 로고    scopus 로고
    • Weakly supervised scale-invariant learning of models for visual recognition
    • R. Fergus, P. Zisserman, and A. Perona. Weakly supervised scale-invariant learning of models for visual recognition. IJCV, 71(3):273-303, 2007.
    • (2007) IJCV , vol.71 , Issue.3 , pp. 273-303
    • Fergus, R.1    Zisserman, P.2    Perona, A.3
  • 14
    • 80052884875 scopus 로고    scopus 로고
    • Improving local descriptors by embedding global and local spatial information
    • T. Harada, H. Nakayama, and Y. Kuniyoshi. Improving local descriptors by embedding global and local spatial information. In ECCV, 2010.
    • (2010) ECCV
    • Harada, T.1    Nakayama, H.2    Kuniyoshi, Y.3
  • 16
    • 77955996743 scopus 로고    scopus 로고
    • Asymmetric region-to-image matching for comparing images with generic object categories
    • J. Kim and K. Grauman. Asymmetric region-to-image matching for comparing images with generic object categories. In CVPR, 2010.
    • (2010) CVPR
    • Kim, J.1    Grauman, K.2
  • 17
    • 84856626270 scopus 로고    scopus 로고
    • Modeling spatial layout with fisher vectors for image categorization
    • J. Krapac, J. Verbeek, and F. Jurie. Modeling spatial layout with fisher vectors for image categorization. In ICCV, 2011.
    • (2011) ICCV
    • Krapac, J.1    Verbeek, J.2    Jurie, F.3
  • 18
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 19
    • 74049128187 scopus 로고    scopus 로고
    • Dense sampling low-level statistics of local features
    • H. Nakayama, T. Harada, and Y. Kuniyoshi. Dense sampling low-level statistics of local features. In CIVR, 2009.
    • (2009) CIVR
    • Nakayama, H.1    Harada, T.2    Kuniyoshi, Y.3
  • 20
    • 77955994782 scopus 로고    scopus 로고
    • Global gaussian approach for scene categorization using information geometry
    • H. Nakayama, T. Harada, and Y. Kuniyoshi. Global gaussian approach for scene categorization using information geometry. In CVPR, 2010.
    • (2010) CVPR
    • Nakayama, H.1    Harada, T.2    Kuniyoshi, Y.3
  • 21
  • 22
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 23
    • 34948822288 scopus 로고    scopus 로고
    • Adapted vocabularies for generic visual categorization
    • F. Perronnin, C. Dance, G. Csurka, and M. Bressan. Adapted vocabularies for generic visual categorization. In ECCV, 2006.
    • (2006) ECCV
    • Perronnin, F.1    Dance, C.2    Csurka, G.3    Bressan, M.4
  • 24
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 25
    • 80052885179 scopus 로고    scopus 로고
    • High-dimensional signature compression for large-scale image classification
    • J. Sánchez and F. Perronnin. High-dimensional signature compression for large-scale image classification. In CVPR, 2011.
    • (2011) CVPR
    • Sánchez, J.1    Perronnin, F.2
  • 26
    • 0345414121 scopus 로고    scopus 로고
    • Recognition with local features: The kernel recipe
    • C. Wallraven, B. Caputo, and A. Graf. Recognition with local features: the kernel recipe. In ICCV, 2003.
    • (2003) ICCV
    • Wallraven, C.1    Caputo, B.2    Graf, A.3
  • 27
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 28
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 29
    • 80052886214 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010.
    • (2010) ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.