메뉴 건너뛰기




Volumn 14, Issue 4, 2013, Pages 1058-1072

Pressure distribution of the gaseous flow in microchannel: A lattice Boltzmann study

Author keywords

Gaseous flows; Lattice Boltzmann method; Microchannel; Pressure distribution

Indexed keywords


EID: 84877700651     PISSN: 18152406     EISSN: 19917120     Source Type: Journal    
DOI: 10.4208/cicp.170612.240113a     Document Type: Article
Times cited : (11)

References (37)
  • 1
    • 0034229896 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of electrochemical systems
    • X. He and N. Ling, Lattice Boltzmann simulation of electrochemical systems, Comput. Phys. Commun., 129 (2000), 158-166.
    • (2000) Comput. Phys. Commun. , vol.129 , pp. 158-166
    • He, X.1    Ling, N.2
  • 3
    • 35348865627 scopus 로고    scopus 로고
    • Lattice Boltzmann model for the simulation of multicomponent mixtures
    • S. Arcidiacono, I. V. Karlin, J. Mantzaras and C. E. Frouzakis, Lattice Boltzmann model for the simulation of multicomponent mixtures, Phys. Rev. E, 76 (2007), 046703.
    • (2007) Phys. Rev. e , vol.76 , pp. 046703
    • Arcidiacono, S.1    Karlin, I.V.2    Mantzaras, J.3    Frouzakis, C.E.4
  • 5
    • 23844511263 scopus 로고    scopus 로고
    • Pressure distributions of gaseous slip flow in straight and uniform rectangular microchannels
    • J. Jang and S. T. Wereley, Pressure distributions of gaseous slip flow in straight and uniform rectangular microchannels, Microfluid and Nanofluid, 1 (2004), 41-51.
    • (2004) Microfluid and Nanofluid , vol.1 , pp. 41-51
    • Jang, J.1    Wereley, S.T.2
  • 6
    • 9744232189 scopus 로고    scopus 로고
    • Examiation of the LBM in simulation of microchannel flow in transitional regime
    • C. Shen, D. B. Tian, C. Xie and J. Fan, Examiation of the LBM in simulation of microchannel flow in transitional regime, Microscale Thermophys. Eng., 8 (2004), 405-410.
    • (2004) Microscale Thermophys. Eng. , vol.8 , pp. 405-410
    • Shen, C.1    Tian, D.B.2    Xie, C.3    Fan, J.4
  • 7
    • 0141538115 scopus 로고    scopus 로고
    • Second-order slip laws in microchannels for helium and nitrogen
    • J. Maurer, P. Tabelin, P. Joseph and H. Willaime, Second-order slip laws in microchannels for helium and nitrogen, Phys. Fluids, 15 (2003), 2613-2621.
    • (2003) Phys. Fluids , vol.15 , pp. 2613-2621
    • Maurer, J.1    Tabelin, P.2    Joseph, P.3    Willaime, H.4
  • 8
    • 58149512537 scopus 로고    scopus 로고
    • Computational and experimental study of gas flows through long channels of various cross sections in the whole range of the Knudsen number
    • S. Varoutis, S. Naris, V. Hauer, C. Day and D. Valougeorgis, Computational and experimental study of gas flows through long channels of various cross sections in the whole range of the Knudsen number, J. Vac. Sci. Technol. A, 27 (2009), 89-100.
    • (2009) J. Vac. Sci. Technol. A , vol.27 , pp. 89-100
    • Varoutis, S.1    Naris, S.2    Hauer, V.3    Day, C.4    Valougeorgis, D.5
  • 9
    • 36549094315 scopus 로고
    • Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hardsphere molecules
    • T. Ohwada, Y. Sone and K. Aoki, Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hardsphere molecules, Phys. Fluids A, 1 (1989), 2042-2049.
    • (1989) Phys. Fluids A , vol.1 , pp. 2042-2049
    • Ohwada, T.1    Sone, Y.2    Aoki, K.3
  • 10
    • 55549133585 scopus 로고    scopus 로고
    • Lattice Boltzmann modeling of microchannel flow in slip flow regime
    • F. Verhaeghe, L. S. Luo and B. Blanpain, Lattice Boltzmann modeling of microchannel flow in slip flow regime, J. Comput. Phys., 228 (2009), 147-157.
    • (2009) J. Comput. Phys. , vol.228 , pp. 147-157
    • Verhaeghe, F.1    Luo, L.S.2    Blanpain, B.3
  • 11
    • 0141450124 scopus 로고    scopus 로고
    • Lattice-Boltzmann simulations of fluid flows in MEMS
    • X. B. Nie, G. D. Doolen and S. Y. Chen, Lattice-Boltzmann simulations of fluid flows in MEMS, J. Stat. Phys., 102 (2002), 279-289.
    • (2002) J. Stat. Phys. , vol.102 , pp. 279-289
    • Nie, X.B.1    Doolen, G.D.2    Chen, S.Y.3
  • 12
    • 0036639879 scopus 로고    scopus 로고
    • Application of lattice Boltzmann method to simulate microchannel flows
    • C. Y. Lim, C. Shu, X. D. Niu and Y. T. Chew, Application of lattice Boltzmann method to simulate microchannel flows, Phys. Fluids, 14 (2002), 2299-2308.
    • (2002) Phys. Fluids , vol.14 , pp. 2299-2308
    • Lim, C.Y.1    Shu, C.2    Niu, X.D.3    Chew, Y.T.4
  • 13
    • 41349091193 scopus 로고    scopus 로고
    • Lattice Boltzmann simulation of rarefied gas flows in microchannels
    • Y.H. Zhang, R. S. Qin and D. R. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E, 71 (2005), 047702.
    • (2005) Phys. Rev. e , vol.71 , pp. 047702
    • Zhang, Y.H.1    Qin, R.S.2    Emerson, D.R.3
  • 14
    • 79551472188 scopus 로고    scopus 로고
    • Lattice Boltzmann method for microfluidics: Models and applications
    • J. F. Zhang, Lattice Boltzmann method for microfluidics: models and applications, Microfluid and Nanofluid, 10 (2005), 1-28.
    • (2005) Microfluid and Nanofluid , vol.10 , pp. 1-28
    • Zhang, J.F.1
  • 15
    • 33645943380 scopus 로고    scopus 로고
    • Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows
    • Z. L. Guo, T. S. Zhao and Y. Shi, Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows, J. Appl. Phys., 99 (2006), 074903.
    • (2006) J. Appl. Phys. , vol.99 , pp. 074903
    • Guo, Z.L.1    Zhao, T.S.2    Shi, Y.3
  • 16
    • 41549112062 scopus 로고    scopus 로고
    • Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow
    • Z. L. Guo, C. G. Zheng and B. C. Shi, Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow, Phys. Rev. E, 77 (2008), 036707.
    • (2008) Phys. Rev. e , vol.77 , pp. 036707
    • Guo, Z.L.1    Zheng, C.G.2    Shi, B.C.3
  • 18
    • 0001207344 scopus 로고    scopus 로고
    • A priori derivation of the lattice Boltzmann equation
    • X. Y. He and L. S. Luo, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55 (1997), R6333-R6336.
    • (1997) Phys. Rev. e , vol.55
    • He, X.Y.1    Luo, L.S.2
  • 19
    • 0002945795 scopus 로고    scopus 로고
    • Discretization of the velocity space in the solution of the Boltzmann equation
    • X. Shan and X. He, Discretization of the velocity space in the solution of the Boltzmann equation, Phys. Rev. Lett., 80 (1998), 65-68.
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 65-68
    • Shan, X.1    He, X.2
  • 20
    • 33645949581 scopus 로고
    • The mean free path of gas molecules in the transition regime
    • D. W. Stops, The mean free path of gas molecules in the transition regime, J. Phys. D, 3 (1970).
    • (1970) J. Phys. D , vol.3
    • Stops, D.W.1
  • 21
    • 79051469860 scopus 로고    scopus 로고
    • An extended Navier-Stokes formulation for gas flows in the Knudsen layer near a wall
    • Z. L. Guo, B. C. Shi and Ch. G. Zheng, An extended Navier-Stokes formulation for gas flows in the Knudsen layer near a wall, Euro. Phys. Lett., 80 (2007), 24001.
    • (2007) Euro. Phys. Lett. , vol.80 , pp. 24001
    • Guo, Z.L.1    Shi, B.C.2    Zheng, Ch.G.3
  • 22
    • 34848895743 scopus 로고    scopus 로고
    • Kinetic lattice Boltzmann method for microscale gas flows: Issues on boundary condition, relaxation time, and regularization
    • X. Niu, S. A. Hyodo, T. Munekata and K. Suga, Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization, Phys. Rev. E, 76 (2007), 036711.
    • (2007) Phys. Rev. e , vol.76 , pp. 036711
    • Niu, X.1    Hyodo, S.A.2    Munekata, T.3    Suga, K.4
  • 23
    • 33750046359 scopus 로고    scopus 로고
    • Capturing Knudsen layer phenomena using a lattice Boltzmann model
    • Y.H. Zhang, X. J. Gu, R.W. Barber and D. R. Emerson, Capturing Knudsen layer phenomena using a lattice Boltzmann model, Phys. Rev. E, 74 (2006), 046704.
    • (2006) Phys. Rev. e , vol.74 , pp. 046704
    • Zhang, Y.H.1    Gu, X.J.2    Barber, R.W.3    Emerson, D.R.4
  • 24
    • 31144474753 scopus 로고    scopus 로고
    • Viscosity and slip velocity in gas flow in microchannels
    • M. Fichman and G. Hetsroni, Viscosity and slip velocity in gas flow in microchannels, Phys. Fluids, 17 (2005), 123102.
    • (2005) Phys. Fluids , vol.17 , pp. 123102
    • Fichman, M.1    Hetsroni, G.2
  • 25
    • 20444433999 scopus 로고    scopus 로고
    • Capturing the Knudsen layer in continuumfluid models of non-equilibrium gas flows
    • D. A. Lockerby, J. M. Reese and M. A. Gallis, Capturing the Knudsen layer in continuumfluid models of non-equilibrium gas flows, AIAA J., 43 (2005), 1391-1393.
    • (2005) AIAA J. , vol.43 , pp. 1391-1393
    • Lockerby, D.A.1    Reese, J.M.2    Gallis, M.A.3
  • 26
    • 33645687069 scopus 로고    scopus 로고
    • Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation
    • X. Shan, X.-F. Yuan and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J. Fluid Mech., 550 (2006), 413-441.
    • (2006) J. Fluid Mech. , vol.550 , pp. 413-441
    • Shan, X.1    Yuan, X.-F.2    Chen, H.3
  • 27
    • 0000752046 scopus 로고
    • Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accomodation at the surface
    • S. K. Loyalka, N. Petrellis and T. S. Strovick, Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accomodation at the surface, Phys. Fluids, 18 (1975), 1094-1099.
    • (1975) Phys. Fluids , vol.18 , pp. 1094-1099
    • Loyalka, S.K.1    Petrellis, N.2    Strovick, T.S.3
  • 29
    • 31944452059 scopus 로고    scopus 로고
    • Simulation of micro- and nano-scale flows via the lattice Boltzmann method
    • Y. Zhou, R. Zhanga, I. Staroselsky, H. Chen, W. T. Kim and M. S. Jhon, Simulation of micro- and nano-scale flows via the lattice Boltzmann method, Phys. A, 362 (2006), 68-77.
    • (2006) Phys. A , vol.362 , pp. 68-77
    • Zhou, Y.1    Zhanga, R.2    Staroselsky, I.3    Chen, H.4    Kim, W.T.5    Jhon, M.S.6
  • 30
    • 77952631614 scopus 로고    scopus 로고
    • Computation of rarefied gaseous flows in micro to nano scale channelswith slip to transient regimes using general second-order quadratic elements
    • M. Darbandi and Y. Daghighi, Computation of rarefied gaseous flows in micro to nano scale channelswith slip to transient regimes using general second-order quadratic elements, Proc. 6th Int. Conf. nanochannels, Microchannels and Minichannels, (2008), 55-64.
    • (2008) Proc. 6th Int. Conf. Nanochannels, Microchannels and Minichannels , pp. 55-64
    • Darbandi, M.1    Daghighi, Y.2
  • 31
    • 40549141461 scopus 로고    scopus 로고
    • Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows
    • S. H. Kim, H. Pitsch and D. B. Iain, Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows, Phys. Rev. E, 77 (2008), 026704.
    • (2008) Phys. Rev. e , vol.77 , pp. 026704
    • Kim, S.H.1    Pitsch, H.2    Iain, D.B.3
  • 32
    • 84860716652 scopus 로고    scopus 로고
    • Second-order gaseous slip flow models in long circular and noncircular microchannels and nanochannels
    • Z. P. Duan, Second-order gaseous slip flow models in long circular and noncircular microchannels and nanochannels, Microfluid and Nanofluid, 5 (2012), 805-820.
    • (2012) Microfluid and Nanofluid , vol.5 , pp. 805-820
    • Duan, Z.P.1
  • 33
    • 0037026130 scopus 로고    scopus 로고
    • Mesoscopic modelling of slip motion at fluid-solid interfaces with heterogeneus catalysis
    • S. Succi, Mesoscopic modelling of slip motion at fluid-solid interfaces with heterogeneus catalysis, Phys. Rev. Lett., 89 (2002), 064502.
    • (2002) Phys. Rev. Lett. , vol.89 , pp. 064502
    • Succi, S.1
  • 34
    • 41349084147 scopus 로고    scopus 로고
    • Kinetic boundary conditions in the lattice Boltzmann method
    • S. Ansumali and I. V. Karlin, Kinetic boundary conditions in the lattice Boltzmann method, Phys. Rev. E, 66 (2002), 026311.
    • (2002) Phys. Rev. e , vol.66 , pp. 026311
    • Ansumali, S.1    Karlin, I.V.2
  • 35
    • 0042156824 scopus 로고    scopus 로고
    • Statistical simulation of rarefied gas flows in micro-channels
    • C. Shen, J. Faa and C. Xie, Statistical simulation of rarefied gas flows in micro-channels, J. Comput. Phys., 189 (2003), 512-526.
    • (2003) J. Comput. Phys. , vol.189 , pp. 512-526
    • Shen, C.1    Faa, J.2    Xie, C.3
  • 36
    • 22244470414 scopus 로고    scopus 로고
    • Rarefaction and compressibility effects on steaty and transient gas flow in microchannels
    • S. Colin, Rarefaction and compressibility effects on steaty and transient gas flow in microchannels, Microfluid and Nanofluid, 1 (2005), 268-279.
    • (2005) Microfluid and Nanofluid , vol.1 , pp. 268-279
    • Colin, S.1
  • 37
    • 0031246710 scopus 로고    scopus 로고
    • Heat transfer and flow fields in short microchannels using direct simulation monte carlo
    • C. Mavriplis, J. C. Ahn and R. Goulard, Heat transfer and flow fields in short microchannels using direct simulation monte carlo, AIAA J. Thermophys., 11 (1997), 489-496.
    • (1997) AIAA J. Thermophys. , vol.11 , pp. 489-496
    • Mavriplis, C.1    Ahn, J.C.2    Goulard, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.