-
2
-
-
84863393320
-
-
A. Cassan et al., Nature 481, 167 (2012).
-
(2012)
Nature
, vol.481
, pp. 167
-
-
Cassan, A.1
-
3
-
-
84922716669
-
-
F. Fressin et al., http://arxiv.org/abs/1301.0842 (2013).
-
(2013)
-
-
Fressin, F.1
-
4
-
-
84877316061
-
-
A. W. Howard et al., Science 340, 572 (2013).
-
(2013)
Science
, vol.340
, pp. 572
-
-
Howard, A.W.1
-
7
-
-
49349125487
-
-
M. H. Hart, Icarus 33, 23 (1978).
-
(1978)
Icarus
, vol.33
, pp. 23
-
-
Hart, M.H.1
-
10
-
-
84922704480
-
-
R. K. Kopparapu et al., http://arxiv.org/abs/1301.6674 (2013).
-
(2013)
-
-
Kopparapu, R.K.1
-
11
-
-
79961021934
-
-
S. Seager, Ed. Univ. of Arizona Press, Tucson, AZ
-
S. Lubow, S. Ida, in Exoplanets, S. Seager, Ed. (Univ. of Arizona Press, Tucson, AZ, 2011), p. 347.
-
(2011)
Exoplanets
, pp. 347
-
-
Lubow, S.1
Ida, S.2
-
12
-
-
84877324631
-
-
J. Baross et al., Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life, National Research Council (National Academies Press, Washington, DC, 2007)
-
J. Baross et al., Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life, National Research Council (National Academies Press, Washington, DC, 2007).
-
-
-
-
14
-
-
84877336858
-
-
note
-
The early Earth' s habitability is not fully understood, owing to a phenomenon dubbed the "faint young sun paradox." A few billion years ago, the Sun was 20 to 30% fainter than it is today, based on asteroseismology-constrained stellar evolution models (58). Yet, there is no evidence that Earth was frozen over during that time, and the mechanism (including the possibility of a higher concentration of atmospheric greenhouse gases) for keeping Earth warm is not fully agreed upon.
-
-
-
-
15
-
-
0025925736
-
-
C. de Bergh et al., Science 251, 547 (1991).
-
(1991)
Science
, vol.251
, pp. 547
-
-
De Bergh, C.1
-
16
-
-
84877329941
-
-
note
-
2 atmosphere forms very early on by magma crystallization (59).
-
-
-
-
18
-
-
84877344468
-
-
note
-
Models in (10) do not include water clouds. Water clouds generally have a cooling effect on planet atmospheres and would extend the habitable zone inward of <0.99 AU.
-
-
-
-
19
-
-
84877332748
-
-
note
-
Liquid surface water may be detectable by the polarized ocean glint (specular reflection) with very futuristic space telescopes (60). In addition, variable visible-wavelength brightness attributed to clouds may indicate water oceans (61).
-
-
-
-
20
-
-
84922752731
-
-
D. Deming et al., http://adsabs.harvard.edu/abs/2013arXiv1302.1141D (2013).
-
(2013)
-
-
Deming, D.1
-
24
-
-
84877347038
-
-
note
-
Lab-cultured microorganisms have been observed at temperatures as high as 395 K (62), and evidence for intact microorganism DNA and RNA has been seen at 473 K (63). A slightly higher value of up to 500 K may be considered for stability of biomolecules (64).
-
-
-
-
36
-
-
79959990783
-
-
Y. Abe, A. Abe-Ouchi, N. H. Sleep, K. J. Zahnle, Astrobiology 11, 443 (2011).
-
(2011)
Astrobiology
, vol.11
, pp. 443
-
-
Abe, Y.1
Abe-Ouchi, A.2
Sleep, N.H.3
Zahnle, K.J.4
-
39
-
-
84877359759
-
-
note
-
A relevant note is that scorching Mercury has water ice at its poles (65).
-
-
-
-
46
-
-
79959990784
-
-
S. D. Domagal-Goldman, V. S. Meadows, M. W. Claire, J. F. Kasting, Astrobiology 11, 419 (2011).
-
(2011)
Astrobiology
, vol.11
, pp. 419
-
-
Domagal-Goldman, S.D.1
Meadows, V.S.2
Claire, M.W.3
Kasting, J.F.4
-
47
-
-
84877352455
-
-
note
-
At 100 to 200 nm, a quiet M star EUV flux is about a factor of 1000 lower than a solar-like star's flux. At 200 to 300 nm, the quiet M star EUV flux is about a factor of 100 lower.
-
-
-
-
49
-
-
34548656745
-
-
A. Segura, V. S. Meadows, J. F. Kasting, D. Crisp, M. Cohen, Astron. Astrophys. 472, 665 (2007).
-
(2007)
Astron. Astrophys.
, vol.472
, pp. 665
-
-
Segura, A.1
Meadows, V.S.2
Kasting, J.F.3
Crisp, D.4
Cohen, M.5
-
50
-
-
79958286409
-
-
S. Seager, Ed. Univ. of Arizona Press, Tucson, AZ
-
W. A. Traub, B. R. Oppenheimer, in Exoplanets, S. Seager, Ed. (Univ. of Arizona Press, Tucson, AZ, 2011), p. 111.
-
(2011)
Exoplanets
, pp. 111
-
-
Traub, W.A.1
Oppenheimer, B.R.2
-
51
-
-
84874061581
-
-
I. A. G. Snellen, R. J. de Kok, R. le Poole, M. Brogi, J. Birkby, Astrophys. J. 764, 182 (2013).
-
(2013)
Astrophys. J.
, vol.764
, pp. 182
-
-
Snellen, I.A.G.1
De Kok, R.J.2
Le Poole, R.3
Brogi, M.4
Birkby, J.5
-
52
-
-
84922740858
-
-
http://exep.jpl.nasa.gov/technology/
-
-
-
-
53
-
-
80052301181
-
-
S. Seager, Ed. Univ. of Arizona Press, Tucson, AX
-
J. Winn, in Exoplanets, S. Seager, Ed. (Univ. of Arizona Press, Tucson, AX, 2011), p. 55.
-
(2011)
Exoplanets
, pp. 55
-
-
Winn, J.1
-
57
-
-
84877338619
-
-
note
-
NASA recently selected the Transiting Exoplanet Survey Satellite (TESS) for launch in 2017. TESS is an all-sky survey that will discover thousands of exoplanets orbiting nearby stars, including the highly prized habitable-zone planets transiting M stars, the pool of planets suitable for atmospheric follow-up with the James Webb Space Telescope.
-
-
-
-
63
-
-
0038654460
-
-
M. O. Schrenk, D. S. Kelley, J. R. Delaney, J. A. Baross, Appl. Environ. Microbiol. 69, 3580 (2003).
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 3580
-
-
Schrenk, M.O.1
Kelley, D.S.2
Delaney, J.R.3
Baross, J.A.4
-
65
-
-
84872486546
-
-
D. J. Lawrence et al., Science 339, 292 (2013).
-
(2013)
Science
, vol.339
, pp. 292
-
-
Lawrence, D.J.1
-
66
-
-
84922752481
-
-
H. Rein, http://arxiv.org/abs/1211.7121 (2012).
-
(2012)
-
-
Rein, H.1
|