-
2
-
-
33748894346
-
Rough set-based approach to feature selection in customer relationship management
-
Tseng T. L. B., Huang C. C, Rough set-based approach to feature selection in customer relationship management. Omega 2007 35 4 365 383
-
(2007)
Omega
, vol.35
, Issue.4
, pp. 365-383
-
-
Tseng, T.L.B.1
Huang, C.C.2
-
3
-
-
0035416447
-
Using rough sets with heuristics for feature selection
-
DOI 10.1023/A:1011219601502
-
Zhong N., Dong J. Z., Ohsuga S., Using rough sets with heuristics to feature selection. Journal of Intelligent Information Systems 2001 16 3 199 214 (Pubitemid 32886812)
-
(2001)
Journal of Intelligent Information Systems
, vol.16
, Issue.3
, pp. 199-214
-
-
Zhong, N.1
Dong, J.2
Ohsuga, S.3
-
5
-
-
84870053451
-
The CASH algorithm-cost-sensitive attribute selection using histograms
-
10.1016/j.ins.2011.01.035
-
Weiss Y., Elovici Y., Rokach L., The CASH algorithm-cost-sensitive attribute selection using histograms. Information Sciences 2013 222 247 268 10.1016/j.ins.2011.01.035
-
(2013)
Information Sciences
, vol.222
, pp. 247-268
-
-
Weiss, Y.1
Elovici, Y.2
Rokach, L.3
-
8
-
-
0004064575
-
-
New York, NY, USA Academic Press
-
Hunt E. B., Marin J., Stone P. J., Experiments in Induction 1966 New York, NY, USA Academic Press
-
(1966)
Experiments in Induction
-
-
Hunt, E.B.1
Marin, J.2
Stone, P.J.3
-
9
-
-
85041528332
-
Reducing misclassification costs
-
Morgan Kaufmann
-
Pazzani M., Merz C., Ali P. M. K., Hume T., Brunk C., Reducing misclassification costs. Proceedings of the 11th International Conference of Machine Learning (ICML '94) 1994 Morgan Kaufmann
-
(1994)
Proceedings of the 11th International Conference of Machine Learning (ICML '94)
-
-
Pazzani, M.1
Merz, C.2
Ali, P.M.K.3
Hume, T.4
Brunk, C.5
-
12
-
-
0036680338
-
Learning cost-sensitive active classifiers
-
DOI 10.1016/S0004-3702(02)00209-6, PII S0004370202002096
-
Greiner R., Grove A. J., Roth D., Learning cost-sensitive active classifiers. Artificial Intelligence 2002 139 2 137 174 10.1016/S0004-3702(02) 00209-6 MR1930605 (Pubitemid 34802160)
-
(2002)
Artificial Intelligence
, vol.139
, Issue.2
, pp. 137-174
-
-
Greiner, R.1
Grove, A.J.2
Roth, D.3
-
13
-
-
33846274880
-
Cost-sensitive feature acquisition and classification
-
DOI 10.1016/j.patcog.2006.11.008, PII S0031320306004808
-
Ji S., Carin L., Cost-sensitive feature acquisition and classification. Pattern Recognition 2007 40 1474 1485 10.1016/j.patcog.2006.11.008 (Pubitemid 46123392)
-
(2007)
Pattern Recognition
, vol.40
, Issue.5
, pp. 1474-1485
-
-
Ji, S.1
Carin, L.2
-
15
-
-
79960290370
-
Test-cost-sensitive attribute reduction
-
Min F., He H. P., Qian Y. H., Zhu W., Test-cost-sensitive attribute reduction. Information Sciences 2011 181 4928 4942
-
(2011)
Information Sciences
, vol.181
, pp. 4928-4942
-
-
Min, F.1
He, H.P.2
Qian, Y.H.3
Zhu, W.4
-
16
-
-
84957648581
-
Computation of minimal cost reducts
-
Berlin, Germany Springer Lecture Notes in Computer Science
-
Susmaga R., Ras Z., Skowron A., Computation of minimal cost reducts. Foundations of Intelligent Systems 1999 1609 Berlin, Germany Springer 448 456 Lecture Notes in Computer Science
-
(1999)
Foundations of Intelligent Systems
, vol.1609
, pp. 448-456
-
-
Susmaga, R.1
Ras, Z.2
Skowron, A.3
-
18
-
-
67349214027
-
A hierarchical model for test-cost-sensitive decision systems
-
10.1016/j.ins.2009.03.007 MR2554690
-
Min F., Liu Q., A hierarchical model for test-cost-sensitive decision systems. Information Sciences 2009 179 14 2442 2452 10.1016/j.ins.2009.03.007 MR2554690
-
(2009)
Information Sciences
, vol.179
, Issue.14
, pp. 2442-2452
-
-
Min, F.1
Liu, Q.2
-
19
-
-
0000865580
-
Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
-
Turney P., Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research 1994 2 1 369 409
-
(1994)
Journal of Artificial Intelligence Research
, vol.2
, Issue.1
, pp. 369-409
-
-
Turney, P.1
-
22
-
-
0026154832
-
Use of background knowledge in decision tree induction
-
DOI 10.1023/A:1022609710832
-
Núñez M., The use of background knowledge in decision tree induction. Machine Learning 1991 6 3 231 250 (Pubitemid 21737707)
-
(1991)
Machine Learning
, vol.6
, Issue.3
, pp. 231-250
-
-
Nunez Marlon1
-
23
-
-
0027682298
-
Cost-sensitive learning of classification knowledge and its applications in robotics
-
Tan M., Cost-sensitive learning of classification knowledge and its applications in robotics. Machine Learning 1993 13 1 7 33
-
(1993)
Machine Learning
, vol.13
, Issue.1
, pp. 7-33
-
-
Tan, M.1
-
26
-
-
80052037462
-
-
2012
-
Min F., Zhu W., Zhao H., Pan G. Y., Liu J. B., Xu Z. L., Coser: cost-senstive rough sets. 2012, http://grc.fjzs.edu.cn/fmin/
-
Coser: Cost-senstive Rough Sets
-
-
Min, F.1
Zhu, W.2
Zhao, H.3
Pan, G.Y.4
Liu, J.B.5
Xu, Z.L.6
-
27
-
-
35048879624
-
A partition model of granular computing
-
Yao Y. Y., A partition model of granular computing. Transactions on Rough Sets I 2004 3100 232 253
-
(2004)
Transactions on Rough Sets i
, vol.3100
, pp. 232-253
-
-
Yao, Y.Y.1
-
28
-
-
84876581470
-
Test-cost-sensitive attribute reduction of data with normal distribution measurement errors
-
10.1155/2013/946070 946070
-
Zhao H., Min F., Zhu W., Test-cost-sensitive attribute reduction of data with normal distribution measurement errors. Mathematical Problems in Engineering 2013 2013 12 10.1155/2013/946070 946070
-
(2013)
Mathematical Problems in Engineering
, vol.2013
, pp. 12
-
-
Zhao, H.1
Min, F.2
Zhu, W.3
-
30
-
-
8344286314
-
Granular computing - Structures, representations, and applications
-
Lin T. Y., Granular computing-structures, representations, and applications. Lecture Notes in Artificial Intelligence 2003 2639
-
(2003)
Lecture Notes in Artificial Intelligence
, vol.2639
-
-
Lin, T.Y.1
-
31
-
-
84861810655
-
On some types of neighborhood-related covering rough sets
-
10.1016/j.ijar.2012.03.004 MR2930711
-
Ma L., On some types of neighborhood-related covering rough sets. International Journal of Approximate Reasoning 2012 53 6 901 911 10.1016/j.ijar.2012.03.004 MR2930711
-
(2012)
International Journal of Approximate Reasoning
, vol.53
, Issue.6
, pp. 901-911
-
-
Ma, L.1
-
33
-
-
34548228836
-
Generalized rough sets based on relations
-
DOI 10.1016/j.ins.2007.05.037, PII S0020025507002733
-
Zhu W., Generalized rough sets based on relations. Information Sciences 2007 177 22 4997 5011 10.1016/j.ins.2007.05.037 MR2362807 (Pubitemid 47331457)
-
(2007)
Information Sciences
, vol.177
, Issue.22
, pp. 4997-5011
-
-
Zhu, W.1
-
34
-
-
0037621960
-
Reduction and axiomization of covering generalized rough sets
-
10.1016/S0020-0255(03)00056-2 MR1981128
-
Zhu W., Wang F.-Y., Reduction and axiomization of covering generalized rough sets. Information Sciences 2003 152 217 230 10.1016/S0020-0255(03)00056-2 MR1981128
-
(2003)
Information Sciences
, vol.152
, pp. 217-230
-
-
Zhu, W.1
Wang, F.-Y.2
-
35
-
-
84862895108
-
Attribute reduction of data with error ranges and test costs
-
10.1016/j.ins.2012.04.031 MR2946900
-
Min F., Zhu W., Attribute reduction of data with error ranges and test costs. Information Sciences 2012 211 48 67 10.1016/j.ins.2012.04.031 MR2946900
-
(2012)
Information Sciences
, vol.211
, pp. 48-67
-
-
Min, F.1
Zhu, W.2
-
36
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
DOI 10.1109/TKDE.2006.17
-
Zhou Z., Liu X., Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering 2006 18 1 63 77 (Pubitemid 43145089)
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
-
39
-
-
75349109450
-
An investigation of neural network classifiers with unequal misclassification costs and group sizes
-
Lan J., Hu M., Patuwo E., Zhang G., An investigation of neural network classifiers with unequal misclassification costs and group sizes. Decision Support Systems 2010 48 4 582 591
-
(2010)
Decision Support Systems
, vol.48
, Issue.4
, pp. 582-591
-
-
Lan, J.1
Hu, M.2
Patuwo, E.3
Zhang, G.4
-
41
-
-
13544276223
-
Cost-sensitive learning and decision making revisited
-
DOI 10.1016/j.ejor.2004.03.031, PII S0377221704002978
-
Viaene S., Dedene G., Cost-sensitive learning and decision making revisited. European Journal of Operational Research 2005 166 1 212 220 (Pubitemid 40219824)
-
(2005)
European Journal of Operational Research
, vol.166
, Issue.SPEC. ISS. 1
, pp. 212-220
-
-
Viaene, S.1
Dedene, G.2
-
43
-
-
67549148354
-
Monotonic variable consistency rough set approaches
-
10.1016/j.ijar.2009.02.011 MR2567157
-
Błaszczyński J., Greco S., Słowiński R., Szela̧g M., Monotonic variable consistency rough set approaches. International Journal of Approximate Reasoning 2009 50 7 979 999 10.1016/j.ijar.2009.02.011 MR2567157
-
(2009)
International Journal of Approximate Reasoning
, vol.50
, Issue.7
, pp. 979-999
-
-
Błaszczyński, J.1
Greco, S.2
Słowiński, R.3
Szela̧g, M.4
-
44
-
-
0032092163
-
Extensions and intentions in the rough set theory
-
PII S0020025597100469
-
Bonikowski Z., Bryniarski E., Wybraniec-Skardowska U., Extensions and intentions in the rough set theory. Information Sciences 1998 107 1-4 149 167 10.1016/S0020-0255(97)10046-9 MR1629852 (Pubitemid 128383778)
-
(1998)
Information Sciences
, vol.107
, Issue.1-4
, pp. 149-167
-
-
Bonikowski, Z.1
Bryniarski, E.2
Wybraniec-Skardowska, U.3
-
45
-
-
70349782070
-
Variable-precision dominance-based rough set approach and attribute reduction
-
10.1016/j.ijar.2009.02.003 MR2556114
-
Inuiguchi M., Yoshioka Y., Kusunoki Y., Variable-precision dominance-based rough set approach and attribute reduction. International Journal of Approximate Reasoning 2009 50 8 1199 1214 10.1016/j.ijar.2009.02.003 MR2556114
-
(2009)
International Journal of Approximate Reasoning
, vol.50
, Issue.8
, pp. 1199-1214
-
-
Inuiguchi, M.1
Yoshioka, Y.2
Kusunoki, Y.3
-
46
-
-
70349766835
-
A granularity-based framework of deduction, induction, and abduction
-
10.1016/j.ijar.2009.06.002 MR2556115
-
Kudo Y., Murai T., Akama S., A granularity-based framework of deduction, induction, and abduction. International Journal of Approximate Reasoning 2009 50 8 1215 1226 10.1016/j.ijar.2009.06.002 MR2556115
-
(2009)
International Journal of Approximate Reasoning
, vol.50
, Issue.8
, pp. 1215-1226
-
-
Kudo, Y.1
Murai, T.2
Akama, S.3
-
48
-
-
0032142371
-
Constructive and algebraic methods of the theory of rough sets
-
10.1016/S0020-0255(98)00012-7 MR1634596
-
Yao Y. Y., Constructive and algebraic methods of the theory of rough sets. Information Sciences 1998 109 1-4 21 47 10.1016/S0020-0255(98)00012-7 MR1634596
-
(1998)
Information Sciences
, vol.109
, Issue.1-4
, pp. 21-47
-
-
Yao, Y.Y.1
-
49
-
-
52949144505
-
Probabilistic rough set approximations
-
Yao Y. Y., Probabilistic rough set approximations. Journal of Approximate Reasoning 2008 49 2 255 271
-
(2008)
Journal of Approximate Reasoning
, vol.49
, Issue.2
, pp. 255-271
-
-
Yao, Y.Y.1
-
50
-
-
0005755397
-
Approximations in the space (u, π)
-
MR733737
-
Zakowski W., Approximations in the space (u, π). Demonstratio Mathematica 1983 16 40 761 769 MR733737
-
(1983)
Demonstratio Mathematica
, vol.16
, Issue.40
, pp. 761-769
-
-
Zakowski, W.1
-
51
-
-
67349152755
-
Relationship among basic concepts in covering-based rough sets
-
10.1016/j.ins.2009.02.013 MR2554693
-
Zhu W., Relationship among basic concepts in covering-based rough sets. Information Sciences 2009 179 14 2478 2486 10.1016/j.ins.2009.02.013 MR2554693
-
(2009)
Information Sciences
, vol.179
, Issue.14
, pp. 2478-2486
-
-
Zhu, W.1
-
55
-
-
84877283404
-
-
Wikipedia
-
Wikipedia, http://www.wikipedia.org/
-
-
-
-
57
-
-
0013326060
-
Feature selection for classification
-
Dash M., Liu H., Feature selection for classification. Intelligent Data Analysis 1997 1 1-4 131 156
-
(1997)
Intelligent Data Analysis
, vol.1
, Issue.1-4
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
58
-
-
33845523839
-
Feature selection based on rough sets and particle swarm optimization
-
DOI 10.1016/j.patrec.2006.09.003, PII S0167865506002327
-
Wang X., Yang J., Teng X., Xia W., Jensen R., Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 2007 28 4 459 471 (Pubitemid 44920436)
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.4
, pp. 459-471
-
-
Wang, X.1
Yang, J.2
Teng, X.3
Xia, W.4
Jensen, R.5
-
59
-
-
0024895461
-
A note on genetic algorithms for large-scale feature selection
-
Siedlecki W., Sklansky J., A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters 1989 10 5 335 347
-
(1989)
Pattern Recognition Letters
, vol.10
, Issue.5
, pp. 335-347
-
-
Siedlecki, W.1
Sklansky, J.2
-
61
-
-
24744445851
-
Efficient knowledge reduction algorithm based on new conditional information entropy
-
Liu Q. H., Li F., Min F., Ye M., Yang G. W., An efficient reduction algorithm based on new conditional information entropy Control and Decision 2005 20 8 878 882 (Pubitemid 41293160)
-
(2005)
Kongzhi yu Juece/Control and Decision
, vol.20
, Issue.8
, pp. 878-882
-
-
Liu, Q.-H.1
Li, F.2
Min, F.3
Ye, M.4
Yang, G.-W.5
-
62
-
-
0002395767
-
The discernibility matrices and functions in information systems
-
Skowron A., Rauszer C., The discernibility matrices and functions in information systems. Intelligent Decision Support 1992
-
(1992)
Intelligent Decision Support
-
-
Skowron, A.1
Rauszer, C.2
|