메뉴 건너뛰기




Volumn 105, Issue 3, 2013, Pages 863-873

Agroclimatology-based yield model for carrot using multiple linear regression and artificial neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84877268183     PISSN: 00021962     EISSN: 14350645     Source Type: Journal    
DOI: 10.2134/agronj2012.0237     Document Type: Article
Times cited : (3)

References (39)
  • 1
    • 84874454668 scopus 로고    scopus 로고
    • Multiple linear regression
    • In: I.B. Weiner, editor, John Wiley & Sons, Hoboken, NJ
    • Aiken, L.S., S.G. West, and S.C. Pitts. 2003. Multiple linear regression. In: I.B. Weiner, editor, Handbook of Psychology. Vol. 4. John Wiley & Sons, Hoboken, NJ. p. 481-507.
    • (2003) Handbook of Psychology , vol.4 , pp. 481-507
    • Aiken, L.S.1    West, S.G.2    Pitts, S.C.3
  • 2
    • 57849083889 scopus 로고    scopus 로고
    • Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach
    • doi:10.1016/j.eja.2008.07.005
    • Alvarez, R. 2009. Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. Eur. J. Agron. 30:70-77. doi:10.1016/j.eja.2008.07.005
    • (2009) Eur. J. Agron , vol.30 , pp. 70-77
    • Alvarez, R.1
  • 3
    • 0030935250 scopus 로고    scopus 로고
    • Development of a neural network for soybean rust epidemics
    • Batchelor, W., X. Yang, and A. Tschanz. 1997. Development of a neural network for soybean rust epidemics. Trans. ASAE 40:247-254.
    • (1997) Trans. ASAE , vol.40 , pp. 247-254
    • Batchelor, W.1    Yang, X.2    Tschanz, A.3
  • 4
    • 3342958330 scopus 로고    scopus 로고
    • Modeling vegetative development of berseem clover (Trifolium alexandrinum L.) as a function of growing degree days using linear regression and neural networks
    • doi:10.4141/P02-143
    • Clapham, W., and J. Fedders. 2004. Modeling vegetative development of berseem clover (Trifolium alexandrinum L.) as a function of growing degree days using linear regression and neural networks. Can. J. Plant Sci. 84:511-517. doi:10.4141/P02-143
    • (2004) Can. J. Plant Sci , vol.84 , pp. 511-517
    • Clapham, W.1    Fedders, J.2
  • 5
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • doi:10.1080/ 10473289.1997.10463925
    • Comrie, A.C. 1997. Comparing neural networks and regression models for ozone forecasting. J. Air Waste Manage. Assoc. 47:653-663. doi:10.1080/ 10473289.1997.10463925
    • (1997) J. Air Waste Manage. Assoc , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 6
    • 14644401332 scopus 로고    scopus 로고
    • Application of artificial neural networks to complex groundwater management problems
    • doi:10.1023/B:NARR.0000007808.11860.7e
    • Coppola, E., Jr., M. Poulton, E. Charles, J. Dustman, and F. Szidarovszky. 2003. Application of artificial neural networks to complex groundwater management problems. Nat. Resour. Res. 12:303-320. doi:10.1023/B:NARR.0000007808.11860.7e
    • (2003) Nat. Resour. Res , vol.12 , pp. 303-320
    • Coppola Jr., E.1    Poulton, M.2    Charles, E.3    Dustman, J.4    Szidarovszky, F.5
  • 7
    • 0028162871 scopus 로고
    • Development of a neural network model to predict daily solar radiation
    • doi:10.1016/0168-1923(94)90103-1
    • Elizondo, D., G. Hoogenboom, and R. McClendon. 1994. Development of a neural network model to predict daily solar radiation. Agric. For. Meteorol. 71:115-132. doi:10.1016/0168-1923(94)90103-1
    • (1994) Agric. For. Meteorol , vol.71 , pp. 115-132
    • Elizondo, D.1    Hoogenboom, G.2    McClendon, R.3
  • 8
    • 84866451831 scopus 로고    scopus 로고
    • Environment Canada, Environ. Can., Ottawa, ON, accessed 20 Sept. 2011
    • Environment Canada. 2010. Climate trends and variations bulletin-Autumn 2010. Environ. Can., Ottawa, ON. http://www.ec.gc.ca/adsc-cmda/default.asp?lang=en&n=A49944AE-1#a2 (accessed 20 Sept. 2011).
    • (2010) Climate Trends and Variations Bulletin-Autumn 2010
  • 9
    • 0002774946 scopus 로고
    • Influence of the harvesting date of carrots on quality and quality preservation
    • Fritz, D., and J. Weichmann. 1979. Influence of the harvesting date of carrots on quality and quality preservation. Acta Hort. 93:91-100.
    • (1979) Acta Hort , vol.93 , pp. 91-100
    • Fritz, D.1    Weichmann, J.2
  • 10
    • 0000501647 scopus 로고
    • An empirical mathematical model to describe plant root systems
    • doi:10.2307/2402227
    • Gerwitz, A., and E. Page. 1974. An empirical mathematical model to describe plant root systems. J. Appl. Ecol. 11:773-781. doi:10.2307/2402227
    • (1974) J. Appl. Ecol , vol.11 , pp. 773-781
    • Gerwitz, A.1    Page, E.2
  • 11
    • 0027802527 scopus 로고
    • Analyses of growing degree-days for agriculture in Atlantic Canada
    • doi:10.3354/cr003169
    • Gordon, R., and A. Bootsma. 1993. Analyses of growing degree-days for agriculture in Atlantic Canada. Clim. Res. 3:169-176. doi:10.3354/cr003169
    • (1993) Clim. Res , vol.3 , pp. 169-176
    • Gordon, R.1    Bootsma, A.2
  • 12
    • 0033978825 scopus 로고    scopus 로고
    • A comparison of two approaches for modelling cassava (Manihot esculenta Crantz.) crop growth
    • doi:10.1006/anbo.1999.0999
    • Gray, V. 2000. A comparison of two approaches for modelling cassava (Manihot esculenta Crantz.) crop growth. Ann. Bot. 85:77-90. doi:10.1006/anbo.1999.0999
    • (2000) Ann. Bot , vol.85 , pp. 77-90
    • Gray, V.1
  • 13
    • 33947601468 scopus 로고    scopus 로고
    • Relating crop yield to topographic attributes using spatial analysis neural networks and regression
    • doi:10.1016/j.geoderma.2006.12.004
    • Green, T.R., J.D. Salas, A. Martinez, and R.H. Erskine. 2007. Relating crop yield to topographic attributes using spatial analysis neural networks and regression. Geoderma 139:23-37. doi:10.1016/j.geoderma.2006.12.004
    • (2007) Geoderma , vol.139 , pp. 23-37
    • Green, T.R.1    Salas, J.D.2    Martinez, A.3    Erskine, R.H.4
  • 15
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • doi:10.1016/0893-6080(88)90003-2
    • Jacobs, R.A. 1988. Increased rates of convergence through learning rate adaptation. Neural Netw. 1:295-307. doi:10.1016/0893-6080(88)90003-2
    • (1988) Neural Netw , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 16
    • 19044373009 scopus 로고    scopus 로고
    • Artificial neural networks for corn and soybean yield prediction
    • doi:10.1016/j. agsy.2004.07.009
    • Kaul, M., R.L. Hill, and C. Walthall. 2005. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 85:1-18. doi:10.1016/j. agsy.2004.07.009
    • (2005) Agric. Syst , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 17
    • 80052455488 scopus 로고    scopus 로고
    • Control of dissolved oxygen in northern temperate lakes over scales ranging from minutes to days
    • doi:10.3354/ab00249
    • Langman, O., P. Hanson, S. Carpenter, and Y. Hu. 2010. Control of dissolved oxygen in northern temperate lakes over scales ranging from minutes to days. Aquat. Biol. 9:193-202. doi:10.3354/ab00249
    • (2010) Aquat. Biol , vol.9 , pp. 193-202
    • Langman, O.1    Hanson, P.2    Carpenter, S.3    Hu, Y.4
  • 18
    • 0026821995 scopus 로고
    • Short-term load forecasting using an artificial neural network
    • Lee, K., Y. Cha, and J. Park. 1992. Short-term load forecasting using an artificial neural network. IEEE Trans. Power Syst. 7:124-132.
    • (1992) IEEE Trans. Power Syst , vol.7 , pp. 124-132
    • Lee, K.1    Cha, Y.2    Park, J.3
  • 19
    • 62249130077 scopus 로고    scopus 로고
    • Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression
    • doi:10.1016/j. agwat.2009.01.003
    • Liu, X., S. Kang, and F. Li. 2009. Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression. Agric. Water Manage. 96:939-945. doi:10.1016/j. agwat.2009.01.003
    • (2009) Agric. Water Manage , vol.96 , pp. 939-945
    • Liu, X.1    Kang, S.2    Li, F.3
  • 20
    • 67650538142 scopus 로고    scopus 로고
    • Response surface optimization of an artificial neural network for predicting the size of re-assembled casein micelles
    • doi:10.1016/j.compag.2009.06.005
    • Madadlou, A., Z. Emam-Djomeh, M.E. Mousavi, M. Ehsani, M. Javanmard, and D. Sheehan. 2009. Response surface optimization of an artificial neural network for predicting the size of re-assembled casein micelles. Comput. Electron. Agric. 68:216-221. doi:10.1016/j.compag.2009.06.005
    • (2009) Comput. Electron. Agric , vol.68 , pp. 216-221
    • Madadlou, A.1    Emam-Djomeh, Z.2    Mousavi, M.E.3    Ehsani, M.4    Javanmard, M.5    Sheehan, D.6
  • 21
    • 8844276108 scopus 로고    scopus 로고
    • Testing the generalization of artificial neural networks with cross-validation and independent-validation in modeling rice tillering dynamics
    • doi:10.1016/j.ecolmodel.2004.06.035
    • Mi, X., Y. Zou, W. Wei, and K. Ma. 2005. Testing the generalization of artificial neural networks with cross-validation and independent-validation in modeling rice tillering dynamics. Ecol. Modell. 181:493-508. doi:10.1016/j.ecolmodel.2004.06.035
    • (2005) Ecol. Modell , vol.181 , pp. 493-508
    • Mi, X.1    Zou, Y.2    Wei, W.3    Ma, K.4
  • 23
    • 84893478675 scopus 로고    scopus 로고
    • Four assumptions of multiple regression that researchers should always test
    • Osborne, J., and E. Waters. 2002. Four assumptions of multiple regression that researchers should always test. Pract. Assess. Res. Eval. 8:1-9.
    • (2002) Pract. Assess. Res. Eval , vol.8 , pp. 1-9
    • Osborne, J.1    Waters, E.2
  • 24
    • 62349127133 scopus 로고    scopus 로고
    • Canopy volume and root length infuence greenshoulder and internal greening in carrot
    • doi:10.1080/19315260802560532
    • Palanisamy, R., R.R. Lada, S.K. Asiedu, C.D. Caldwell, and A. Adams. 2009. Canopy volume and root length infuence greenshoulder and internal greening in carrot. Int. J. Veg. Sci. 15:116-132. doi:10.1080/19315260802560532
    • (2009) Int. J. Veg. Sci , vol.15 , pp. 116-132
    • Palanisamy, R.1    Lada, R.R.2    Asiedu, S.K.3    Caldwell, C.D.4    Adams, A.5
  • 25
    • 15344350446 scopus 로고    scopus 로고
    • Direct adaptive controller for nonafne nonlinear systems using self-structuring neural networks
    • Park, J.H., S.H. Huh, S.H. Kim, S.J. Seo, and G.T. Park. 2005. Direct adaptive controller for nonafne nonlinear systems using self-structuring neural networks. IEEE Trans. Neural Netw. 16:414-422.
    • (2005) IEEE Trans. Neural Netw , vol.16 , pp. 414-422
    • Park, J.H.1    Huh, S.H.2    Kim, S.H.3    Seo, S.J.4    Park, G.T.5
  • 26
    • 79952506657 scopus 로고    scopus 로고
    • Overfit prevention in adaptive weighted distance nearest neighbor
    • doi:10.1016/j.procs.2011.01.0 01
    • Parvinnia, E., M.R. Moosavi, M.Z. Jahromi, and K. Ziarati. 2011. Overfit prevention in adaptive weighted distance nearest neighbor. Procedia Comput. Sci. 3:1256-1261. doi:10.1016/j.procs.2011.01.0 01
    • (2011) Procedia Comput. Sci , vol.3 , pp. 1256-1261
    • Parvinnia, E.1    Moosavi, M.R.2    Jahromi, M.Z.3    Ziarati, K.4
  • 27
    • 32044468545 scopus 로고    scopus 로고
    • Seeding rate and seed spacing modulate root yield and recovery of slicer and dicer carrots differently
    • doi:10.1016/j.scienta.2005.10.002
    • Rajasekaran, L.R., T. Astatkie, and C. Caldwell. 2006. Seeding rate and seed spacing modulate root yield and recovery of slicer and dicer carrots differently. Sci. Hortic. 107:319-324. doi:10.1016/j.scienta.2005.10.002
    • (2006) Sci. Hortic , vol.107 , pp. 319-324
    • Rajasekaran, L.R.1    Astatkie, T.2    Caldwell, C.3
  • 28
    • 0040911848 scopus 로고
    • Further studies on the effects of plant density, spatial arrangement and time of harvest on yield and root size in carrots
    • doi:10.1017/S0021859600029087
    • Salter, P., I. Currah, and J.R. Fellows. 1980. Further studies on the effects of plant density, spatial arrangement and time of harvest on yield and root size in carrots. J. Agric. Sci. 94:465-478. doi:10.1017/S0021859600029087
    • (1980) J. Agric. Sci , vol.94 , pp. 465-478
    • Salter, P.1    Currah, I.2    Fellows, J.R.3
  • 29
    • 33846673366 scopus 로고    scopus 로고
    • Verification and validation of simulation models
    • In: M.E. Kuhl et a l., editors, Orlando, FL. 4-7 Dec. 2005. IEEE, Piscataway, NJ
    • Sargent, R.G. 2005. Verification and validation of simulation models. In: M.E. Kuhl et a l., editors, Proceedings of the 37th Winter Simulation Conference, Orlando, FL. 4-7 Dec. 2005. IEEE, Piscataway, NJ. p. 130-143.
    • (2005) Proceedings of the 37th Winter Simulation Conference , pp. 130-143
    • Sargent, R.G.1
  • 30
    • 0031212622 scopus 로고    scopus 로고
    • The use of neural networks in agroecological modelling
    • doi:10.1016/ S0168-1699(9 7)0 0 021-5
    • Schultz, A., and R. Wieland. 1997. The use of neural networks in agroecological modelling. Comput. Electron. Agric. 18:73-90. doi:10.1016/ S0168-1699(9 7)0 0 021-5
    • (1997) Comput. Electron. Agric , vol.18 , pp. 73-90
    • Schultz, A.1    Wieland, R.2
  • 31
    • 0034306915 scopus 로고    scopus 로고
    • Neural networks in agroecological modelling: Stylish application or helpful tool?
    • doi:10.1016/S0168-1699(00)00137-X
    • Schultz, A., R. Wieland, and G. Lutze. 2000. Neural networks in agroecological modelling: Stylish application or helpful tool? Comput. Electron. Agric. 29:73-97. doi:10.1016/S0168-1699(00)00137-X
    • (2000) Comput. Electron. Agric , vol.29 , pp. 73-97
    • Schultz, A.1    Wieland, R.2    Lutze, G.3
  • 32
    • 85085075016 scopus 로고    scopus 로고
    • Opening the neural network black box: An algorithm for extracting rules from function approximating artificial neural networks
    • Brisbane, Australia. 10-13 Dec. 2000. Assoc. Inf. Syst., Atlanta, GA
    • Setiono, R., W. K. Leow, and J.Y. Tong. 2000. Opening the neural network black box: An algorithm for extracting rules from function approximating artificial neural networks. In: Proceedings of the 21st International Conference on Information Systems, Brisbane, Australia. 10-13 Dec. 2000. Assoc. Inf. Syst., Atlanta, GA. p. 176-186.
    • (2000) Proceedings of the 21st International Conference On Information Systems , pp. 176-186
    • Setiono, R.1    Leow, W.K.2    Tong, J.Y.3
  • 33
    • 33749664815 scopus 로고    scopus 로고
    • Comment on "Artificial neural network based modeling of heated catalytic converter performance" by M. Ali Akcayol and Can Cinar [Applied Termal Engineering 25 (2005) 2341]
    • Sha, W. 2007. Comment on "Artificial neural network based modeling of heated catalytic converter performance" by M. Ali Akcayol and Can Cinar [Applied Termal Engineering 25 (2005) 2341]. Appl. Term. Eng. 27:688-689.
    • (2007) Appl. Term. Eng , vol.27 , pp. 688-689
    • Sha, W.1
  • 34
    • 0033233944 scopus 로고    scopus 로고
    • A glossary of basic neural network terminology for regression problems
    • doi:10.1007/s005210050034
    • Stegemann, J., and N. Buenfeld. 1999. A glossary of basic neural network terminology for regression problems. Neural Comput. Appl. 8:290-296. doi:10.1007/s005210050034
    • (1999) Neural Comput. Appl , vol.8 , pp. 290-296
    • Stegemann, J.1    Buenfeld, N.2
  • 36
    • 0142106521 scopus 로고    scopus 로고
    • A neural network approach for thermal/pressure food processing
    • doi:10.1016/ S026 0 -8774(03)00174 -2
    • Torrecilla, J., L. Otero, and P. Sanz. 2004. A neural network approach for thermal/pressure food processing. J. Food Eng. 62:89-95. doi:10.1016/ S026 0 -8774(03)00174 -2
    • (2004) J. Food Eng , vol.62 , pp. 89-95
    • Torrecilla, J.1    Otero, L.2    Sanz, P.3
  • 37
    • 79952953200 scopus 로고    scopus 로고
    • Using a scanner-based minirhizotron system to characterize sweet potato adventitious root development during the initial storage root bulking stage
    • Villordon, A., D. LaBonte, and J. Solis. 2011. Using a scanner-based minirhizotron system to characterize sweet potato adventitious root development during the initial storage root bulking stage. HortScience 46:513-517.
    • (2011) HortScience , vol.46 , pp. 513-517
    • Villordon, A.1    Labonte, D.2    Solis, J.3
  • 39
    • 0031239608 scopus 로고    scopus 로고
    • An artificial neural network model for simulating pesticide concentrations in soil
    • Yang, C., S. Prasher, S. Sreekanth, N. Patni, and L. Masse. 1997. An artificial neural network model for simulating pesticide concentrations in soil. Trans. ASAE 40:1285-1294.
    • (1997) Trans. ASAE , vol.40 , pp. 1285-1294
    • Yang, C.1    Prasher, S.2    Sreekanth, S.3    Patni, N.4    Masse, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.