메뉴 건너뛰기




Volumn 53, Issue , 2013, Pages 45-63

Experienced travel time prediction for congested freeways

Author keywords

Congestion maps; Freeway; Prediction; Traffic flow; Travel times

Indexed keywords

CLUSTERING ALGORITHMS; FORECASTING; HIGHWAY SYSTEMS; STOCHASTIC SYSTEMS; STREET TRAFFIC CONTROL; TIME VARYING CONTROL SYSTEMS; TRAFFIC CONTROL; TRANSPORTATION; TRANSPORTATION ROUTES; TRAVEL TIME;

EID: 84877133254     PISSN: 01912615     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trb.2013.03.006     Document Type: Article
Times cited : (144)

References (39)
  • 5
    • 0036568064 scopus 로고    scopus 로고
    • Estimating travel times and vehicle trajectories on freeways using dual loop detectors
    • Coifman B. Estimating travel times and vehicle trajectories on freeways using dual loop detectors. Transportation Research Part A 2002, 36(4):351-364.
    • (2002) Transportation Research Part A , vol.36 , Issue.4 , pp. 351-364
    • Coifman, B.1
  • 6
    • 34250028124 scopus 로고    scopus 로고
    • Vehicle re-identification and travel time measurement across freeway junctions using the existing detector infrastructure
    • Coifman B., Krishnamurthy S. Vehicle re-identification and travel time measurement across freeway junctions using the existing detector infrastructure. Transportation Research Part C 2007, 15(3):135-153.
    • (2007) Transportation Research Part C , vol.15 , Issue.3 , pp. 135-153
    • Coifman, B.1    Krishnamurthy, S.2
  • 8
    • 0347526141 scopus 로고    scopus 로고
    • Neural network model for rapid forecasting of freeway link travel time
    • Dharia A., Adeli H. Neural network model for rapid forecasting of freeway link travel time. Engineering Applications of Artificial Intelligence 2003, 16(7-8):607-613.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , Issue.7-8 , pp. 607-613
    • Dharia, A.1    Adeli, H.2
  • 9
    • 33745153428 scopus 로고    scopus 로고
    • Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates
    • Dion F., Rakha H. Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates. Transportation Research Part B 2006, 40(9):745-766.
    • (2006) Transportation Research Part B , vol.40 , Issue.9 , pp. 745-766
    • Dion, F.1    Rakha, H.2
  • 10
    • 80855130320 scopus 로고    scopus 로고
    • An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks
    • Du L., Peeta S., Kim Y.H. An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks. Transportation Research Part B 2012, 46(1):235-252.
    • (2012) Transportation Research Part B , vol.46 , Issue.1 , pp. 235-252
    • Du, L.1    Peeta, S.2    Kim, Y.H.3
  • 11
    • 80052718938 scopus 로고    scopus 로고
    • A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
    • Fei X., Lu C.-C., Liu K. A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transportation Research Part C 2011, 19(6):1306-1318.
    • (2011) Transportation Research Part C , vol.19 , Issue.6 , pp. 1306-1318
    • Fei, X.1    Lu, C.-C.2    Liu, K.3
  • 12
    • 77549087313 scopus 로고    scopus 로고
    • Incorporation of Lagrangian measurements in freeway traffic state estimation
    • Herrera J.C., Bayen A.M. Incorporation of Lagrangian measurements in freeway traffic state estimation. Transportation Research Part B 2010, 44(4):460-481.
    • (2010) Transportation Research Part B , vol.44 , Issue.4 , pp. 460-481
    • Herrera, J.C.1    Bayen, A.M.2
  • 13
    • 84868216794 scopus 로고    scopus 로고
    • On the spatial partitioning of urban transportation networks
    • Ji Y., Geroliminis N. On the spatial partitioning of urban transportation networks. Transportation Research Part B 2012, 46(10):1639-1656.
    • (2012) Transportation Research Part B , vol.46 , Issue.10 , pp. 1639-1656
    • Ji, Y.1    Geroliminis, N.2
  • 14
    • 3242704391 scopus 로고    scopus 로고
    • Wavelet packet-autocorrelation function method for traffic flow pattern analysis
    • Jiang X., Adeli H. Wavelet packet-autocorrelation function method for traffic flow pattern analysis. Computer Aided Civil Infrastructure Engineering 2004, 19(5):324-337.
    • (2004) Computer Aided Civil Infrastructure Engineering , vol.19 , Issue.5 , pp. 324-337
    • Jiang, X.1    Adeli, H.2
  • 15
    • 56749156535 scopus 로고    scopus 로고
    • Toward understanding and reducing errors in real-time estimation of travel times
    • Kothuri S.M., Tufte K.A., Fayed E., Bertini R.L. Toward understanding and reducing errors in real-time estimation of travel times. Transportation Research Record 2008, 2049:21-28.
    • (2008) Transportation Research Record , vol.2049 , pp. 21-28
    • Kothuri, S.M.1    Tufte, K.A.2    Fayed, E.3    Bertini, R.L.4
  • 17
    • 0031284302 scopus 로고    scopus 로고
    • An urban traffic flow model integrating neural networks
    • Ledoux C. An urban traffic flow model integrating neural networks. Transportation Research Part C 1997, 5(5):287-300.
    • (1997) Transportation Research Part C , vol.5 , Issue.5 , pp. 287-300
    • Ledoux, C.1
  • 18
    • 71549126513 scopus 로고    scopus 로고
    • Measurement and estimation of traffic oscillation properties
    • Li X., Peng F., Ouyang Y. Measurement and estimation of traffic oscillation properties. Transportation Research Part B 2010, 44(1):1-14.
    • (2010) Transportation Research Part B , vol.44 , Issue.1 , pp. 1-14
    • Li, X.1    Peng, F.2    Ouyang, Y.3
  • 19
    • 33846118451 scopus 로고    scopus 로고
    • Developments and applications of simulation-based online travel time prediction system: traveling to Ocean City, Maryland
    • Liu Y., Lin P.W., Lai X.R., Chang G.L., Marquess A. Developments and applications of simulation-based online travel time prediction system: traveling to Ocean City, Maryland. Transportation Research Record 2006, 1959:92-104.
    • (2006) Transportation Research Record , vol.1959 , pp. 92-104
    • Liu, Y.1    Lin, P.W.2    Lai, X.R.3    Chang, G.L.4    Marquess, A.5
  • 20
    • 84929215712 scopus 로고    scopus 로고
    • Trade-offs between inductive loops and GPS vehicles for travel time estimation: a mobile century case study
    • In: Transportation Research Board 91st Annual Meeting, Washington, DC.
    • Mazaré, P.E., Tossavainen, O.P., Bayen, A., Work, D., 2012. Trade-offs between inductive loops and GPS vehicles for travel time estimation: a mobile century case study. In: Transportation Research Board 91st Annual Meeting, Washington, DC.
    • (2012)
    • Mazaré, P.E.1    Tossavainen, O.P.2    Bayen, A.3    Work, D.4
  • 21
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan G. An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika 1980, 45(3):325-342.
    • (1980) Psychometrika , vol.45 , Issue.3 , pp. 325-342
    • Milligan, G.1
  • 22
    • 79952736659 scopus 로고    scopus 로고
    • Real-time road traffic prediction with spatio-temporal correlations
    • Min W., Wynter L. Real-time road traffic prediction with spatio-temporal correlations. Transportation Research Part C 2011, 19(4):606-616.
    • (2011) Transportation Research Part C , vol.19 , Issue.4 , pp. 606-616
    • Min, W.1    Wynter, L.2
  • 23
    • 0038722803 scopus 로고    scopus 로고
    • Principal component analysis of urban traffic characteristics and meteorological data
    • Nagendra S.M.S., Khare M. Principal component analysis of urban traffic characteristics and meteorological data. Transportation Research Part D 2003, 8(4):285-297.
    • (2003) Transportation Research Part D , vol.8 , Issue.4 , pp. 285-297
    • Nagendra, S.M.S.1    Khare, M.2
  • 24
    • 1942473008 scopus 로고    scopus 로고
    • Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway
    • Nanthawichit C., Nakatsuji T., Suzuki H. Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway. Transportation Research Record 2003, 1855:49-59.
    • (2003) Transportation Research Record , vol.1855 , pp. 49-59
    • Nanthawichit, C.1    Nakatsuji, T.2    Suzuki, H.3
  • 25
    • 16244411240 scopus 로고
    • A simplified theory of kinematic waves in highway traffic. Part I, general theory
    • Newell G.F. A simplified theory of kinematic waves in highway traffic. Part I, general theory. Transportation Research Part B 1993, 27(4):281-287.
    • (1993) Transportation Research Part B , vol.27 , Issue.4 , pp. 281-287
    • Newell, G.F.1
  • 26
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filtering theory
    • Okutani I., Stephanedes Y.J. Dynamic prediction of traffic volume through Kalman filtering theory. Transportation Research Part B 1984, 18(1):1-11.
    • (1984) Transportation Research Part B , vol.18 , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 27
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Computational and Applied Mathematics 1987, 20:53-65.
    • (1987) Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 28
    • 77954459171 scopus 로고    scopus 로고
    • Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts
    • Treiber M., Kesting A., Helbing D. Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts. Transportation Research Part B 2010, 44(8-9):983-1000.
    • (2010) Transportation Research Part B , vol.44 , Issue.8-9 , pp. 983-1000
    • Treiber, M.1    Kesting, A.2    Helbing, D.3
  • 29
    • 33751077286 scopus 로고    scopus 로고
    • Reliable real-time framework for short-term freeway travel time prediction
    • Van Lint J.W.C. Reliable real-time framework for short-term freeway travel time prediction. Journal of Transportation Engineering 2006, 132(12):921-932.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.12 , pp. 921-932
    • Van Lint, J.W.C.1
  • 31
    • 47849099540 scopus 로고    scopus 로고
    • Support vector machine technique for the short term prediction of travel time
    • Istanbul, Turkey
    • Vanajakshi, L., Rilett, L.R., 2007. Support vector machine technique for the short term prediction of travel time. In: IEEE Proceedings of Intelligent Vehicles Symposium, Istanbul, Turkey, pp. 600-605.
    • (2007) IEEE Proceedings of Intelligent Vehicles Symposium , pp. 600-605
    • Vanajakshi, L.1    Rilett, L.R.2
  • 32
    • 56449129029 scopus 로고    scopus 로고
    • Empirical and analytical investigation of traffic flow regimes and transitions in signalized arterials
    • Vlahogianni E.I., Geroliminis N., Skabardonis A. Empirical and analytical investigation of traffic flow regimes and transitions in signalized arterials. Journal of Transportation Engineering 2008, 134(12):512-522.
    • (2008) Journal of Transportation Engineering , vol.134 , Issue.12 , pp. 512-522
    • Vlahogianni, E.I.1    Geroliminis, N.2    Skabardonis, A.3
  • 33
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transportation Research Part C 2005, 13(3):211-234.
    • (2005) Transportation Research Part C , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 34
    • 54049147670 scopus 로고    scopus 로고
    • Real-time freeway traffic state estimation based on extended Kalman filter: adaptive capabilities and real data testing
    • Wang Y., Papageorgiou M., Messmer A. Real-time freeway traffic state estimation based on extended Kalman filter: adaptive capabilities and real data testing. Transportation Research Part A 2008, 42(10):1340-1358.
    • (2008) Transportation Research Part A , vol.42 , Issue.10 , pp. 1340-1358
    • Wang, Y.1    Papageorgiou, M.2    Messmer, A.3
  • 35
    • 33747426961 scopus 로고    scopus 로고
    • Analyzing highway flow patterns using cluster analysis
    • In: 8th International IEEE Annual Conference on Intelligent Transportation Systems, Vienna, Austria
    • Weijermars, W., Van Berkum, E., 2005. Analyzing highway flow patterns using cluster analysis. In: 8th International IEEE Annual Conference on Intelligent Transportation Systems, Vienna, Austria, pp. 831-836.
    • (2005) , pp. 831-836
    • Weijermars, W.1    Van Berkum, E.2
  • 36
    • 78651336315 scopus 로고    scopus 로고
    • Techniques for validating an automatic bottleneck detection tool using archived freeway sensor data
    • Wieczorek J., Fernández-Moctezuma R.J., Bertini R.L. Techniques for validating an automatic bottleneck detection tool using archived freeway sensor data. Transportation Research Record 2010, 2160:96-106.
    • (2010) Transportation Research Record , vol.2160 , pp. 96-106
    • Wieczorek, J.1    Fernández-Moctezuma, R.J.2    Bertini, R.L.3
  • 37
    • 79959762497 scopus 로고    scopus 로고
    • A study of travel time modeling via time series analysis
    • In: Proceedings of IEEE Conference on Control Applications, Toronto, Canada
    • Yang, J.-S., 2005. A study of travel time modeling via time series analysis. In: Proceedings of IEEE Conference on Control Applications, Toronto, Canada, pp. 855-860.
    • (2005) , pp. 855-860
    • Yang, J.-S.1
  • 38
    • 39849084754 scopus 로고    scopus 로고
    • Travel time estimation on a freeway using discrete time Markov chains
    • Yeon J., Elefteriadou L., Lawphongpanich S. Travel time estimation on a freeway using discrete time Markov chains. Transportation Research Part B 2008, 42(4):325-338.
    • (2008) Transportation Research Part B , vol.42 , Issue.4 , pp. 325-338
    • Yeon, J.1    Elefteriadou, L.2    Lawphongpanich, S.3
  • 39


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.