-
1
-
-
0028332036
-
Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers
-
Glass CK. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994;15: 391-407.
-
(1994)
Endocr Rev.
, vol.15
, pp. 391-407
-
-
Glass, C.K.1
-
3
-
-
0034650893
-
The coregulator exchange in transcriptional functions of nuclear receptors
-
Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14:121-141.
-
(2000)
Genes Dev.
, vol.14
, pp. 121-141
-
-
Glass, C.K.1
Rosenfeld, M.G.2
-
4
-
-
34547731515
-
Nuclear receptor coregulators and human disease
-
Lonard DM, Lanz RB, O'Malley BW. Nuclear receptor coregulators and human disease. Endocr Rev. 2007;28:575-587.
-
(2007)
Endocr Rev.
, vol.28
, pp. 575-587
-
-
Lonard, D.M.1
Lanz, R.B.2
O'Malley, B.W.3
-
5
-
-
84866607246
-
Nuclear receptor coregulators: Modulators of pathology and therapeutic targets
-
Lonard DM, O'Malley BW. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol. 2012;8:598-604.
-
(2012)
Nat Rev Endocrinol.
, vol.8
, pp. 598-604
-
-
Lonard, D.M.1
O'Malley, B.W.2
-
6
-
-
0031455626
-
Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway
-
Caelles C, González-Sancho JM, Muñoz A. Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 1997;11:3351-3364.
-
(1997)
Genes Dev.
, vol.11
, pp. 3351-3364
-
-
Caelles, C.1
González-Sancho, J.M.2
Muñoz, A.3
-
7
-
-
0029072676
-
Interactions of thyroid hormone receptor with the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and the HIV-1 Tat transactivator
-
Desai-Yajnik V, Hadzic E, Modlinger P, Malhotra S, Gechlik G, Samuels HH. Interactions of thyroid hormone receptor with the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and the HIV-1 Tat transactivator. J Virol. 1995;69:5103-5112.
-
(1995)
J Virol.
, vol.69
, pp. 5103-5112
-
-
Desai-Yajnik, V.1
Hadzic, E.2
Modlinger, P.3
Malhotra, S.4
Gechlik, G.5
Samuels, H.H.6
-
8
-
-
0030973865
-
Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the alpha-cardiac myosin heavy-chain gene
-
Lee Y, Nadal-Ginard B, Mahdavi V, Izumo S. Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the alpha-cardiac myosin heavy-chain gene. Mol Cell Biol. 1997;17:2745-2755.
-
(1997)
Mol Cell Biol.
, vol.17
, pp. 2745-2755
-
-
Lee, Y.1
Nadal-Ginard, B.2
Mahdavi, V.3
Izumo, S.4
-
9
-
-
0032510804
-
Physical interaction between retinoic acid receptor and the oncoprotein myb inhibits retinoic acid-dependent transactivation
-
Pfitzner E, Kirfel J, Becker P, Rolke A, Schüle R. Physical interaction between retinoic acid receptor and the oncoprotein myb inhibits retinoic acid-dependent transactivation. Proc Natl Acad Sci USA. 1998;95:5539-5544.
-
(1998)
Proc Natl Acad Sci USA.
, vol.95
, pp. 5539-5544
-
-
Pfitzner, E.1
Kirfel, J.2
Becker, P.3
Rolke, A.4
Schüle, R.5
-
10
-
-
0030667318
-
Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression
-
Qi JS, Desai-Yajnik V, Yuan Y, Samuels HH. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression. Mol Cell Biol. 1997;17:7195-7207.
-
(1997)
Mol Cell Biol.
, vol.17
, pp. 7195-7207
-
-
Qi, J.S.1
Desai-Yajnik, V.2
Yuan, Y.3
Samuels, H.H.4
-
11
-
-
0034904491
-
Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR
-
Ishizuka T, Satoh T, Monden T, et al. Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR. Mol Endocrinol. 2001;15:1329-1343.
-
(2001)
Mol Endocrinol.
, vol.15
, pp. 1329-1343
-
-
Ishizuka, T.1
Satoh, T.2
Monden, T.3
-
12
-
-
67649658399
-
Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2
-
Satoh T, Ishizuka T, Tomaru T, et al. Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2. Endocrinology. 2009;150:3283-3290.
-
(2009)
Endocrinology.
, vol.150
, pp. 3283-3290
-
-
Satoh, T.1
Ishizuka, T.2
Tomaru, T.3
-
13
-
-
67650503620
-
Roles of proteasomal 19S regulatory particles in promoter loading of thyroid hormone receptor
-
Satoh T, Ishizuka T, Yoshino S, et al. Roles of proteasomal 19S regulatory particles in promoter loading of thyroid hormone receptor. Biochem Biophys Res Commun. 2009;386:697-702.
-
(2009)
Biochem Biophys Res Commun.
, vol.386
, pp. 697-702
-
-
Satoh, T.1
Ishizuka, T.2
Yoshino, S.3
-
14
-
-
28944446431
-
The many faces of PPARgamma
-
Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005; 123:993-999.
-
(2005)
Cell.
, vol.123
, pp. 993-999
-
-
Lehrke, M.1
Lazar, M.A.2
-
15
-
-
33751533892
-
International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors
-
Michalik L, Auwerx J, Berger JP, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58:726-741.
-
(2006)
Pharmacol Rev.
, vol.58
, pp. 726-741
-
-
Michalik, L.1
Auwerx, J.2
Berger, J.P.3
-
16
-
-
77955274518
-
PPARgamma in adipocyte differentiation and metabolism-novel insights from genome-wide studies
-
Siersbaek R, Nielsen R, Mandrup S. PPARgamma in adipocyte differentiation and metabolism-novel insights from genome-wide studies. FEBS Lett. 2010;584:3242-3249.
-
(2010)
FEBS Lett.
, vol.584
, pp. 3242-3249
-
-
Siersbaek, R.1
Nielsen, R.2
Mandrup, S.3
-
17
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829-839.
-
(1998)
Cell.
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
18
-
-
35848940944
-
Coregulators in adipogenesis: What could we learn from the SRC (p160) coactivator family?
-
Louet JF, O'Malley BW. Coregulators in adipogenesis: what could we learn from the SRC (p160) coactivator family? Cell Cycle. 2007; 6:2448-2452.
-
(2007)
Cell Cycle.
, vol.6
, pp. 2448-2452
-
-
Louet, J.F.1
O'Malley, B.W.2
-
19
-
-
77955266460
-
Brown vs white adipocytes: The PPARγ coregulator story
-
Koppen A, Kalkhoven E. Brown vs white adipocytes: the PPARγ coregulator story. FEBS Lett. 2010;584:3250-3259.
-
(2010)
FEBS Lett.
, vol.584
, pp. 3250-3259
-
-
Koppen, A.1
Kalkhoven, E.2
-
20
-
-
29344460625
-
Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferatoractivated receptor-γ
-
Tomaru T, Satoh T, Yoshino S, et al. Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferatoractivated receptor-γ. Endocrinology. 2006;147:377-388.
-
(2006)
Endocrinology.
, vol.147
, pp. 377-388
-
-
Tomaru, T.1
Satoh, T.2
Yoshino, S.3
-
21
-
-
0037015030
-
Identification of a transcriptionally active peroxisome proliferator-activated receptor γ-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator
-
Surapureddi S, Yu S, Bu H, et al. Identification of a transcriptionally active peroxisome proliferator-activated receptor γ-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc Natl Acad Sci USA. 2002;99:11836-11841.
-
(2002)
Proc Natl Acad Sci USA.
, vol.99
, pp. 11836-11841
-
-
Surapureddi, S.1
Yu, S.2
Bu, H.3
-
22
-
-
0029758906
-
Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex
-
Fondell JD, Ge H, Roeder RG. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci USA. 1996;93:8329-8333.
-
(1996)
Proc Natl Acad Sci USA.
, vol.93
, pp. 8329-8333
-
-
Fondell, J.D.1
Ge, H.2
Roeder, R.G.3
-
23
-
-
0034212441
-
Transcriptional regulation through Mediatorlike coactivators in yeast and metazoan cells
-
Malik S, Roeder RG. Transcriptional regulation through Mediatorlike coactivators in yeast and metazoan cells. Trends Biochem Sci. 2000;25:277-283.
-
(2000)
Trends Biochem Sci.
, vol.25
, pp. 277-283
-
-
Malik, S.1
Roeder, R.G.2
-
24
-
-
84862734144
-
Nucleobindin-2 is a positive modulator of EGF-dependent signals leading to enhancement of cell growth and suppression of adipocyte differentiation
-
Tagaya Y, Miura A, Okada S, Ohshima K, Mori M. Nucleobindin-2 is a positive modulator of EGF-dependent signals leading to enhancement of cell growth and suppression of adipocyte differentiation. Endocrinology. 2012;153:3308-3319.
-
(2012)
Endocrinology.
, vol.153
, pp. 3308-3319
-
-
Tagaya, Y.1
Miura, A.2
Okada, S.3
Ohshima, K.4
Mori, M.5
-
25
-
-
33749859790
-
Identification of nesfatin-1 as a satiety molecule in the hypothalamus
-
Oh I S, Shimizu H, Satoh T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 2006;443:709-712.
-
(2006)
Nature.
, vol.443
, pp. 709-712
-
-
Oh, I.S.1
Shimizu, H.2
Satoh, T.3
-
26
-
-
13844262924
-
Corepressors selectively control the transcriptional activity of PPARγ in adipocytes
-
Guan HP, Ishizuka T, Chui PC, Lehrke M, Lazar MA. Corepressors selectively control the transcriptional activity of PPARγ in adipocytes. Genes Dev. 2005;19:453-461.
-
(2005)
Genes Dev.
, vol.19
, pp. 453-461
-
-
Guan, H.P.1
Ishizuka, T.2
Chui, P.C.3
Lehrke, M.4
Lazar, M.A.5
-
27
-
-
77951865861
-
Proteasomal degradation of retinoid X receptor γ reprograms transcriptional activity of PPARγ in obese mice and humans
-
Lefebvre B, Benomar Y, Guédin A, et al. Proteasomal degradation of retinoid X receptor γ reprograms transcriptional activity of PPARγ in obese mice and humans. J Clin Invest. 2010;120:1454-1468.
-
(2010)
J Clin Invest.
, vol.120
, pp. 1454-1468
-
-
Lefebvre, B.1
Benomar, Y.2
Guédin, A.3
-
29
-
-
0029154635
-
Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor γ
-
Tontonoz P, Hu E, Spiegelman BM. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor γ. Curr Opin Genet Dev. 1995;5:571-576.
-
(1995)
Curr Opin Genet Dev.
, vol.5
, pp. 571-576
-
-
Tontonoz, P.1
Hu, E.2
Spiegelman, B.M.3
-
30
-
-
0028641559
-
Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor
-
Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor. Cell. 1994;79:1147-1156.
-
(1994)
Cell.
, vol.79
, pp. 1147-1156
-
-
Tontonoz, P.1
Hu, E.2
Spiegelman, B.M.3
-
31
-
-
0037053361
-
Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREBbinding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor γ
-
Takahashi N, Kawada T, Yamamoto T, et al. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREBbinding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor γ. J Biol Chem. 2002;277:16906-16912.
-
(2002)
J Biol Chem.
, vol.277
, pp. 16906-16912
-
-
Takahashi, N.1
Kawada, T.2
Yamamoto, T.3
-
32
-
-
0031041075
-
Regulating adipogenesis
-
Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem. 1997;272:5367-5370.
-
(1997)
J Biol Chem.
, vol.272
, pp. 5367-5370
-
-
Mandrup, S.1
Lane, M.D.2
-
33
-
-
24344507734
-
Krox20 stimulates adipogenesis via C/EBPβ-dependent and-independent mechanisms
-
Chen Z, Torrens JI, Anand A, Spiegelman BM, Friedman JM. Krox20 stimulates adipogenesis via C/EBPβ-dependent and-independent mechanisms. Cell Metab. 2005;1:93-106.
-
(2005)
Cell Metab.
, vol.1
, pp. 93-106
-
-
Chen, Z.1
Torrens, J.I.2
Anand, A.3
Spiegelman, B.M.4
Friedman, J.M.5
-
34
-
-
20144389501
-
Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation
-
Oishi Y, Manabe I, Tobe K, et al. Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005;1:27-39.
-
(2005)
Cell Metab.
, vol.1
, pp. 27-39
-
-
Oishi, Y.1
Manabe, I.2
Tobe, K.3
-
35
-
-
0026539509
-
NAM7 nuclear gene encodes a novel member of a family of helicases with a Zn-ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae
-
Altamura N, Groudinsky O, Dujardin G, Slonimski PP. NAM7 nuclear gene encodes a novel member of a family of helicases with a Zn-ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae. J Mol Biol. 1992;224:575-587.
-
(1992)
J Mol Biol.
, vol.224
, pp. 575-587
-
-
Altamura, N.1
Groudinsky, O.2
Dujardin, G.3
Slonimski, P.P.4
-
36
-
-
77949557756
-
Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes
-
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol. 2010;45:71-96.
-
(2010)
Crit Rev Biochem Mol Biol.
, vol.45
, pp. 71-96
-
-
Kang, Y.H.1
Lee, C.H.2
Seo, Y.S.3
-
37
-
-
33748937223
-
Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance
-
Agostini M, Schoenmakers E, Mitchell C, et al. Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance. Cell Metab. 2006;4:303-311.
-
(2006)
Cell Metab.
, vol.4
, pp. 303-311
-
-
Agostini, M.1
Schoenmakers, E.2
Mitchell, C.3
-
38
-
-
77953722272
-
TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation
-
Lee KM, Hsu IW, Tarn WY. TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation. Nucleic Acids Res. 2010;38:3340-3350.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 3340-3350
-
-
Lee, K.M.1
Hsu, I.W.2
Tarn, W.Y.3
-
39
-
-
77957377260
-
Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing
-
Heyd F, Lynch KW. Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol Cell. 2010;40: 126-137.
-
(2010)
Mol Cell.
, vol.40
, pp. 126-137
-
-
Heyd, F.1
Lynch, K.W.2
-
40
-
-
84860325854
-
Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response
-
Beli P, Lukashchuk N, Wagner SA, et al. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell. 2012;46:212-225.
-
(2012)
Mol Cell.
, vol.46
, pp. 212-225
-
-
Beli, P.1
Lukashchuk, N.2
Wagner, S.A.3
-
41
-
-
33748942837
-
Transcriptional control of adipocyte formation
-
Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4:263-273.
-
(2006)
Cell Metab.
, vol.4
, pp. 263-273
-
-
Farmer, S.R.1
-
42
-
-
84856435413
-
Transcriptional networks and chromatin remodeling controlling adipogenesis
-
Siersbæk R, Nielsen R, Mandrup S. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab. 2012;23:56-64.
-
(2012)
Trends Endocrinol Metab.
, vol.23
, pp. 56-64
-
-
Siersbæk, R.1
Nielsen, R.2
Mandrup, S.3
-
43
-
-
55749095056
-
PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genomewide scale
-
Lefterova MI, Zhang Y, Steger DJ, et al. PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genomewide scale. Genes Dev. 2008;22:2941-2952.
-
(2008)
Genes Dev.
, vol.22
, pp. 2941-2952
-
-
Lefterova, M.I.1
Zhang, Y.2
Steger, D.J.3
-
44
-
-
55749101777
-
Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXRdimer composition during adipogenesis
-
Nielsen R, Pedersen TA, Hagenbeek D, et al. Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXRdimer composition during adipogenesis. Genes Dev. 2008;22: 2953-2967.
-
(2008)
Genes Dev.
, vol.22
, pp. 2953-2967
-
-
Nielsen, R.1
Pedersen, T.A.2
Hagenbeek, D.3
-
45
-
-
67650070982
-
The peroxisome proliferator-activated receptor γ/retinoid X receptor γ heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop
-
Wakabayashi K, Okamura M, Tsutsumi S, et al. The peroxisome proliferator-activated receptor γ/retinoid X receptor γ heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol. 2009;29:3544-3555.
-
(2009)
Mol Cell Biol.
, vol.29
, pp. 3544-3555
-
-
Wakabayashi, K.1
Okamura, M.2
Tsutsumi, S.3
-
46
-
-
77952331646
-
Propagation of adipogenic signals through an epigenomic transition state
-
Steger DJ, Grant GR, Schupp M, et al. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 2010; 24:1035-1044.
-
(2010)
Genes Dev.
, vol.24
, pp. 1035-1044
-
-
Steger, D.J.1
Grant, G.R.2
Schupp, M.3
-
47
-
-
0037198679
-
Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis
-
Ge K, Guermah M, Yuan CX, et al. Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature. 2002;417:563-567.
-
(2002)
Nature.
, vol.417
, pp. 563-567
-
-
Ge, K.1
Guermah, M.2
Yuan, C.X.3
-
48
-
-
38549087992
-
Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor β-stimulated adipogenesis and target gene expression
-
Ge K, Cho YW, Guo H, et al. Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor β-stimulated adipogenesis and target gene expression. Mol Cell Biol. 2008;28:1081-1091.
-
(2008)
Mol Cell Biol.
, vol.28
, pp. 1081-1091
-
-
Ge, K.1
Cho, Y.W.2
Guo, H.3
-
49
-
-
77950643587
-
MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis
-
Grøntved L, Madsen MS, Boergesen M, Roeder RG, Mandrup S. MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis. Mol Cell Biol. 2010;30:2155-2169.
-
(2010)
Mol Cell Biol.
, vol.30
, pp. 2155-2169
-
-
Grøntved, L.1
Madsen, M.S.2
Boergesen, M.3
Roeder, R.G.4
Mandrup, S.5
-
50
-
-
65549113969
-
Mediator MED23 links insulin signaling to the adipogenesis transcription cascade
-
Wang W, Huang L, Huang Y, et al. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev Cell. 2009; 16:764-771.
-
(2009)
Dev Cell.
, vol.16
, pp. 764-771
-
-
Wang, W.1
Huang, L.2
Huang, Y.3
-
51
-
-
77950228944
-
Adipogenesis is differentially impaired by thyroid hormone receptor mutant isoforms
-
Mishra A, Zhu XG, Ge K, Cheng SY. Adipogenesis is differentially impaired by thyroid hormone receptor mutant isoforms. J Mol Endocrinol. 2010;44:247-255.
-
(2010)
J Mol Endocrinol.
, vol.44
, pp. 247-255
-
-
Mishra, A.1
Zhu, X.G.2
Ge, K.3
Cheng, S.Y.4
|