메뉴 건너뛰기




Volumn 27, Issue 5, 2013, Pages 769-780

THRAP3 interacts with HELZ2 and plays a novel role in adipocyte differentiation

Author keywords

[No Author keywords available]

Indexed keywords

ADIPONECTIN; FAT DROPLET; FATTY ACID BINDING PROTEIN 4; HELICASE WITH ZINC FINGER 2 BETA; KRUPPEL LIKE FACTOR 5; MEDIATOR COMPLEX; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; PROTEIN BCL 2; SMALL INTERFERING RNA; THYROID HORMONE RECEPTOR ASSOCIATED PROTEIN 3; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR AP 2; TROGLITAZONE; UNCLASSIFIED DRUG;

EID: 84876874503     PISSN: 08888809     EISSN: None     Source Type: Journal    
DOI: 10.1210/me.2012-1332     Document Type: Article
Times cited : (35)

References (51)
  • 1
    • 0028332036 scopus 로고
    • Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers
    • Glass CK. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994;15: 391-407.
    • (1994) Endocr Rev. , vol.15 , pp. 391-407
    • Glass, C.K.1
  • 3
    • 0034650893 scopus 로고    scopus 로고
    • The coregulator exchange in transcriptional functions of nuclear receptors
    • Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14:121-141.
    • (2000) Genes Dev. , vol.14 , pp. 121-141
    • Glass, C.K.1    Rosenfeld, M.G.2
  • 4
    • 34547731515 scopus 로고    scopus 로고
    • Nuclear receptor coregulators and human disease
    • Lonard DM, Lanz RB, O'Malley BW. Nuclear receptor coregulators and human disease. Endocr Rev. 2007;28:575-587.
    • (2007) Endocr Rev. , vol.28 , pp. 575-587
    • Lonard, D.M.1    Lanz, R.B.2    O'Malley, B.W.3
  • 5
    • 84866607246 scopus 로고    scopus 로고
    • Nuclear receptor coregulators: Modulators of pathology and therapeutic targets
    • Lonard DM, O'Malley BW. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol. 2012;8:598-604.
    • (2012) Nat Rev Endocrinol. , vol.8 , pp. 598-604
    • Lonard, D.M.1    O'Malley, B.W.2
  • 6
    • 0031455626 scopus 로고    scopus 로고
    • Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway
    • Caelles C, González-Sancho JM, Muñoz A. Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 1997;11:3351-3364.
    • (1997) Genes Dev. , vol.11 , pp. 3351-3364
    • Caelles, C.1    González-Sancho, J.M.2    Muñoz, A.3
  • 7
    • 0029072676 scopus 로고
    • Interactions of thyroid hormone receptor with the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and the HIV-1 Tat transactivator
    • Desai-Yajnik V, Hadzic E, Modlinger P, Malhotra S, Gechlik G, Samuels HH. Interactions of thyroid hormone receptor with the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and the HIV-1 Tat transactivator. J Virol. 1995;69:5103-5112.
    • (1995) J Virol. , vol.69 , pp. 5103-5112
    • Desai-Yajnik, V.1    Hadzic, E.2    Modlinger, P.3    Malhotra, S.4    Gechlik, G.5    Samuels, H.H.6
  • 8
    • 0030973865 scopus 로고    scopus 로고
    • Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the alpha-cardiac myosin heavy-chain gene
    • Lee Y, Nadal-Ginard B, Mahdavi V, Izumo S. Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the alpha-cardiac myosin heavy-chain gene. Mol Cell Biol. 1997;17:2745-2755.
    • (1997) Mol Cell Biol. , vol.17 , pp. 2745-2755
    • Lee, Y.1    Nadal-Ginard, B.2    Mahdavi, V.3    Izumo, S.4
  • 9
    • 0032510804 scopus 로고    scopus 로고
    • Physical interaction between retinoic acid receptor and the oncoprotein myb inhibits retinoic acid-dependent transactivation
    • Pfitzner E, Kirfel J, Becker P, Rolke A, Schüle R. Physical interaction between retinoic acid receptor and the oncoprotein myb inhibits retinoic acid-dependent transactivation. Proc Natl Acad Sci USA. 1998;95:5539-5544.
    • (1998) Proc Natl Acad Sci USA. , vol.95 , pp. 5539-5544
    • Pfitzner, E.1    Kirfel, J.2    Becker, P.3    Rolke, A.4    Schüle, R.5
  • 10
    • 0030667318 scopus 로고    scopus 로고
    • Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression
    • Qi JS, Desai-Yajnik V, Yuan Y, Samuels HH. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression. Mol Cell Biol. 1997;17:7195-7207.
    • (1997) Mol Cell Biol. , vol.17 , pp. 7195-7207
    • Qi, J.S.1    Desai-Yajnik, V.2    Yuan, Y.3    Samuels, H.H.4
  • 11
    • 0034904491 scopus 로고    scopus 로고
    • Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR
    • Ishizuka T, Satoh T, Monden T, et al. Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR. Mol Endocrinol. 2001;15:1329-1343.
    • (2001) Mol Endocrinol. , vol.15 , pp. 1329-1343
    • Ishizuka, T.1    Satoh, T.2    Monden, T.3
  • 12
    • 67649658399 scopus 로고    scopus 로고
    • Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2
    • Satoh T, Ishizuka T, Tomaru T, et al. Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2. Endocrinology. 2009;150:3283-3290.
    • (2009) Endocrinology. , vol.150 , pp. 3283-3290
    • Satoh, T.1    Ishizuka, T.2    Tomaru, T.3
  • 13
    • 67650503620 scopus 로고    scopus 로고
    • Roles of proteasomal 19S regulatory particles in promoter loading of thyroid hormone receptor
    • Satoh T, Ishizuka T, Yoshino S, et al. Roles of proteasomal 19S regulatory particles in promoter loading of thyroid hormone receptor. Biochem Biophys Res Commun. 2009;386:697-702.
    • (2009) Biochem Biophys Res Commun. , vol.386 , pp. 697-702
    • Satoh, T.1    Ishizuka, T.2    Yoshino, S.3
  • 14
    • 28944446431 scopus 로고    scopus 로고
    • The many faces of PPARgamma
    • Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005; 123:993-999.
    • (2005) Cell. , vol.123 , pp. 993-999
    • Lehrke, M.1    Lazar, M.A.2
  • 15
    • 33751533892 scopus 로고    scopus 로고
    • International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors
    • Michalik L, Auwerx J, Berger JP, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58:726-741.
    • (2006) Pharmacol Rev. , vol.58 , pp. 726-741
    • Michalik, L.1    Auwerx, J.2    Berger, J.P.3
  • 16
    • 77955274518 scopus 로고    scopus 로고
    • PPARgamma in adipocyte differentiation and metabolism-novel insights from genome-wide studies
    • Siersbaek R, Nielsen R, Mandrup S. PPARgamma in adipocyte differentiation and metabolism-novel insights from genome-wide studies. FEBS Lett. 2010;584:3242-3249.
    • (2010) FEBS Lett. , vol.584 , pp. 3242-3249
    • Siersbaek, R.1    Nielsen, R.2    Mandrup, S.3
  • 17
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829-839.
    • (1998) Cell. , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3    Graves, R.4    Wright, M.5    Spiegelman, B.M.6
  • 18
    • 35848940944 scopus 로고    scopus 로고
    • Coregulators in adipogenesis: What could we learn from the SRC (p160) coactivator family?
    • Louet JF, O'Malley BW. Coregulators in adipogenesis: what could we learn from the SRC (p160) coactivator family? Cell Cycle. 2007; 6:2448-2452.
    • (2007) Cell Cycle. , vol.6 , pp. 2448-2452
    • Louet, J.F.1    O'Malley, B.W.2
  • 19
    • 77955266460 scopus 로고    scopus 로고
    • Brown vs white adipocytes: The PPARγ coregulator story
    • Koppen A, Kalkhoven E. Brown vs white adipocytes: the PPARγ coregulator story. FEBS Lett. 2010;584:3250-3259.
    • (2010) FEBS Lett. , vol.584 , pp. 3250-3259
    • Koppen, A.1    Kalkhoven, E.2
  • 20
    • 29344460625 scopus 로고    scopus 로고
    • Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferatoractivated receptor-γ
    • Tomaru T, Satoh T, Yoshino S, et al. Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferatoractivated receptor-γ. Endocrinology. 2006;147:377-388.
    • (2006) Endocrinology. , vol.147 , pp. 377-388
    • Tomaru, T.1    Satoh, T.2    Yoshino, S.3
  • 21
    • 0037015030 scopus 로고    scopus 로고
    • Identification of a transcriptionally active peroxisome proliferator-activated receptor γ-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator
    • Surapureddi S, Yu S, Bu H, et al. Identification of a transcriptionally active peroxisome proliferator-activated receptor γ-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc Natl Acad Sci USA. 2002;99:11836-11841.
    • (2002) Proc Natl Acad Sci USA. , vol.99 , pp. 11836-11841
    • Surapureddi, S.1    Yu, S.2    Bu, H.3
  • 22
    • 0029758906 scopus 로고    scopus 로고
    • Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex
    • Fondell JD, Ge H, Roeder RG. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci USA. 1996;93:8329-8333.
    • (1996) Proc Natl Acad Sci USA. , vol.93 , pp. 8329-8333
    • Fondell, J.D.1    Ge, H.2    Roeder, R.G.3
  • 23
    • 0034212441 scopus 로고    scopus 로고
    • Transcriptional regulation through Mediatorlike coactivators in yeast and metazoan cells
    • Malik S, Roeder RG. Transcriptional regulation through Mediatorlike coactivators in yeast and metazoan cells. Trends Biochem Sci. 2000;25:277-283.
    • (2000) Trends Biochem Sci. , vol.25 , pp. 277-283
    • Malik, S.1    Roeder, R.G.2
  • 24
    • 84862734144 scopus 로고    scopus 로고
    • Nucleobindin-2 is a positive modulator of EGF-dependent signals leading to enhancement of cell growth and suppression of adipocyte differentiation
    • Tagaya Y, Miura A, Okada S, Ohshima K, Mori M. Nucleobindin-2 is a positive modulator of EGF-dependent signals leading to enhancement of cell growth and suppression of adipocyte differentiation. Endocrinology. 2012;153:3308-3319.
    • (2012) Endocrinology. , vol.153 , pp. 3308-3319
    • Tagaya, Y.1    Miura, A.2    Okada, S.3    Ohshima, K.4    Mori, M.5
  • 25
    • 33749859790 scopus 로고    scopus 로고
    • Identification of nesfatin-1 as a satiety molecule in the hypothalamus
    • Oh I S, Shimizu H, Satoh T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 2006;443:709-712.
    • (2006) Nature. , vol.443 , pp. 709-712
    • Oh, I.S.1    Shimizu, H.2    Satoh, T.3
  • 26
    • 13844262924 scopus 로고    scopus 로고
    • Corepressors selectively control the transcriptional activity of PPARγ in adipocytes
    • Guan HP, Ishizuka T, Chui PC, Lehrke M, Lazar MA. Corepressors selectively control the transcriptional activity of PPARγ in adipocytes. Genes Dev. 2005;19:453-461.
    • (2005) Genes Dev. , vol.19 , pp. 453-461
    • Guan, H.P.1    Ishizuka, T.2    Chui, P.C.3    Lehrke, M.4    Lazar, M.A.5
  • 27
    • 77951865861 scopus 로고    scopus 로고
    • Proteasomal degradation of retinoid X receptor γ reprograms transcriptional activity of PPARγ in obese mice and humans
    • Lefebvre B, Benomar Y, Guédin A, et al. Proteasomal degradation of retinoid X receptor γ reprograms transcriptional activity of PPARγ in obese mice and humans. J Clin Invest. 2010;120:1454-1468.
    • (2010) J Clin Invest. , vol.120 , pp. 1454-1468
    • Lefebvre, B.1    Benomar, Y.2    Guédin, A.3
  • 29
    • 0029154635 scopus 로고
    • Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor γ
    • Tontonoz P, Hu E, Spiegelman BM. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor γ. Curr Opin Genet Dev. 1995;5:571-576.
    • (1995) Curr Opin Genet Dev. , vol.5 , pp. 571-576
    • Tontonoz, P.1    Hu, E.2    Spiegelman, B.M.3
  • 30
    • 0028641559 scopus 로고
    • Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor
    • Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor. Cell. 1994;79:1147-1156.
    • (1994) Cell. , vol.79 , pp. 1147-1156
    • Tontonoz, P.1    Hu, E.2    Spiegelman, B.M.3
  • 31
    • 0037053361 scopus 로고    scopus 로고
    • Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREBbinding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor γ
    • Takahashi N, Kawada T, Yamamoto T, et al. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREBbinding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor γ. J Biol Chem. 2002;277:16906-16912.
    • (2002) J Biol Chem. , vol.277 , pp. 16906-16912
    • Takahashi, N.1    Kawada, T.2    Yamamoto, T.3
  • 32
    • 0031041075 scopus 로고    scopus 로고
    • Regulating adipogenesis
    • Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem. 1997;272:5367-5370.
    • (1997) J Biol Chem. , vol.272 , pp. 5367-5370
    • Mandrup, S.1    Lane, M.D.2
  • 33
    • 24344507734 scopus 로고    scopus 로고
    • Krox20 stimulates adipogenesis via C/EBPβ-dependent and-independent mechanisms
    • Chen Z, Torrens JI, Anand A, Spiegelman BM, Friedman JM. Krox20 stimulates adipogenesis via C/EBPβ-dependent and-independent mechanisms. Cell Metab. 2005;1:93-106.
    • (2005) Cell Metab. , vol.1 , pp. 93-106
    • Chen, Z.1    Torrens, J.I.2    Anand, A.3    Spiegelman, B.M.4    Friedman, J.M.5
  • 34
    • 20144389501 scopus 로고    scopus 로고
    • Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation
    • Oishi Y, Manabe I, Tobe K, et al. Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005;1:27-39.
    • (2005) Cell Metab. , vol.1 , pp. 27-39
    • Oishi, Y.1    Manabe, I.2    Tobe, K.3
  • 35
    • 0026539509 scopus 로고
    • NAM7 nuclear gene encodes a novel member of a family of helicases with a Zn-ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae
    • Altamura N, Groudinsky O, Dujardin G, Slonimski PP. NAM7 nuclear gene encodes a novel member of a family of helicases with a Zn-ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae. J Mol Biol. 1992;224:575-587.
    • (1992) J Mol Biol. , vol.224 , pp. 575-587
    • Altamura, N.1    Groudinsky, O.2    Dujardin, G.3    Slonimski, P.P.4
  • 36
    • 77949557756 scopus 로고    scopus 로고
    • Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes
    • Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol. 2010;45:71-96.
    • (2010) Crit Rev Biochem Mol Biol. , vol.45 , pp. 71-96
    • Kang, Y.H.1    Lee, C.H.2    Seo, Y.S.3
  • 37
    • 33748937223 scopus 로고    scopus 로고
    • Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance
    • Agostini M, Schoenmakers E, Mitchell C, et al. Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance. Cell Metab. 2006;4:303-311.
    • (2006) Cell Metab. , vol.4 , pp. 303-311
    • Agostini, M.1    Schoenmakers, E.2    Mitchell, C.3
  • 38
    • 77953722272 scopus 로고    scopus 로고
    • TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation
    • Lee KM, Hsu IW, Tarn WY. TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation. Nucleic Acids Res. 2010;38:3340-3350.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 3340-3350
    • Lee, K.M.1    Hsu, I.W.2    Tarn, W.Y.3
  • 39
    • 77957377260 scopus 로고    scopus 로고
    • Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing
    • Heyd F, Lynch KW. Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol Cell. 2010;40: 126-137.
    • (2010) Mol Cell. , vol.40 , pp. 126-137
    • Heyd, F.1    Lynch, K.W.2
  • 40
    • 84860325854 scopus 로고    scopus 로고
    • Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response
    • Beli P, Lukashchuk N, Wagner SA, et al. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell. 2012;46:212-225.
    • (2012) Mol Cell. , vol.46 , pp. 212-225
    • Beli, P.1    Lukashchuk, N.2    Wagner, S.A.3
  • 41
    • 33748942837 scopus 로고    scopus 로고
    • Transcriptional control of adipocyte formation
    • Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4:263-273.
    • (2006) Cell Metab. , vol.4 , pp. 263-273
    • Farmer, S.R.1
  • 42
    • 84856435413 scopus 로고    scopus 로고
    • Transcriptional networks and chromatin remodeling controlling adipogenesis
    • Siersbæk R, Nielsen R, Mandrup S. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab. 2012;23:56-64.
    • (2012) Trends Endocrinol Metab. , vol.23 , pp. 56-64
    • Siersbæk, R.1    Nielsen, R.2    Mandrup, S.3
  • 43
    • 55749095056 scopus 로고    scopus 로고
    • PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genomewide scale
    • Lefterova MI, Zhang Y, Steger DJ, et al. PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genomewide scale. Genes Dev. 2008;22:2941-2952.
    • (2008) Genes Dev. , vol.22 , pp. 2941-2952
    • Lefterova, M.I.1    Zhang, Y.2    Steger, D.J.3
  • 44
    • 55749101777 scopus 로고    scopus 로고
    • Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXRdimer composition during adipogenesis
    • Nielsen R, Pedersen TA, Hagenbeek D, et al. Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXRdimer composition during adipogenesis. Genes Dev. 2008;22: 2953-2967.
    • (2008) Genes Dev. , vol.22 , pp. 2953-2967
    • Nielsen, R.1    Pedersen, T.A.2    Hagenbeek, D.3
  • 45
    • 67650070982 scopus 로고    scopus 로고
    • The peroxisome proliferator-activated receptor γ/retinoid X receptor γ heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop
    • Wakabayashi K, Okamura M, Tsutsumi S, et al. The peroxisome proliferator-activated receptor γ/retinoid X receptor γ heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol. 2009;29:3544-3555.
    • (2009) Mol Cell Biol. , vol.29 , pp. 3544-3555
    • Wakabayashi, K.1    Okamura, M.2    Tsutsumi, S.3
  • 46
    • 77952331646 scopus 로고    scopus 로고
    • Propagation of adipogenic signals through an epigenomic transition state
    • Steger DJ, Grant GR, Schupp M, et al. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 2010; 24:1035-1044.
    • (2010) Genes Dev. , vol.24 , pp. 1035-1044
    • Steger, D.J.1    Grant, G.R.2    Schupp, M.3
  • 47
    • 0037198679 scopus 로고    scopus 로고
    • Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis
    • Ge K, Guermah M, Yuan CX, et al. Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature. 2002;417:563-567.
    • (2002) Nature. , vol.417 , pp. 563-567
    • Ge, K.1    Guermah, M.2    Yuan, C.X.3
  • 48
    • 38549087992 scopus 로고    scopus 로고
    • Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor β-stimulated adipogenesis and target gene expression
    • Ge K, Cho YW, Guo H, et al. Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor β-stimulated adipogenesis and target gene expression. Mol Cell Biol. 2008;28:1081-1091.
    • (2008) Mol Cell Biol. , vol.28 , pp. 1081-1091
    • Ge, K.1    Cho, Y.W.2    Guo, H.3
  • 49
    • 77950643587 scopus 로고    scopus 로고
    • MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis
    • Grøntved L, Madsen MS, Boergesen M, Roeder RG, Mandrup S. MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis. Mol Cell Biol. 2010;30:2155-2169.
    • (2010) Mol Cell Biol. , vol.30 , pp. 2155-2169
    • Grøntved, L.1    Madsen, M.S.2    Boergesen, M.3    Roeder, R.G.4    Mandrup, S.5
  • 50
    • 65549113969 scopus 로고    scopus 로고
    • Mediator MED23 links insulin signaling to the adipogenesis transcription cascade
    • Wang W, Huang L, Huang Y, et al. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev Cell. 2009; 16:764-771.
    • (2009) Dev Cell. , vol.16 , pp. 764-771
    • Wang, W.1    Huang, L.2    Huang, Y.3
  • 51
    • 77950228944 scopus 로고    scopus 로고
    • Adipogenesis is differentially impaired by thyroid hormone receptor mutant isoforms
    • Mishra A, Zhu XG, Ge K, Cheng SY. Adipogenesis is differentially impaired by thyroid hormone receptor mutant isoforms. J Mol Endocrinol. 2010;44:247-255.
    • (2010) J Mol Endocrinol. , vol.44 , pp. 247-255
    • Mishra, A.1    Zhu, X.G.2    Ge, K.3    Cheng, S.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.