메뉴 건너뛰기




Volumn 83 A, Issue 5, 2013, Pages 495-507

A flexible and robust approach for segmenting cell nuclei from 2D microscopy images using supervised learning and template matching

Author keywords

Cross correlation; Nonrigid registration; Nuclei; Segmentation; Template matching

Indexed keywords

ANIMAL; ARTICLE; AUTOMATED PATTERN RECOGNITION; BONE TUMOR; CELL LINE; CELL NUCLEUS; CELL STRAIN 3T3; COMPARATIVE STUDY; COMPUTER PROGRAM; EVALUATION; FEMALE; FIBROBLAST; HUMAN; IMAGE PROCESSING; METHODOLOGY; MICROSCOPY; MOUSE; OSTEOSARCOMA; PATHOLOGY; STATISTICAL MODEL; TUMOR CELL LINE;

EID: 84876790254     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.22280     Document Type: Article
Times cited : (64)

References (64)
  • 1
    • 0029801002 scopus 로고    scopus 로고
    • Automatic multiparameter fluorescence imaging for determining lymphocyte phenotype and activation status in melanoma tissue sections
    • Dow A, Shafer S, Kirkwood J, Mascari R, Waggoner A. Automatic multiparameter fluorescence imaging for determining lymphocyte phenotype and activation status in melanoma tissue sections. Cytometry 1996; 25: 71-81.
    • (1996) Cytometry , vol.25 , pp. 71-81
    • Dow, A.1    Shafer, S.2    Kirkwood, J.3    Mascari, R.4    Waggoner, A.5
  • 3
    • 0348134935 scopus 로고    scopus 로고
    • A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks
    • Lin G, Adiga U, Olson K, Guzowski J, Barnes C, Roysam B. A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A 2003; 56A: 23-36.
    • (2003) Cytometry A , vol.56 A , pp. 23-36
    • Lin, G.1    Adiga, U.2    Olson, K.3    Guzowski, J.4    Barnes, C.5    Roysam, B.6
  • 5
    • 33645326241 scopus 로고    scopus 로고
    • Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy
    • Chen X, Zhou X, Wong S. Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans Biomed Eng 2006; 53: 762-766.
    • (2006) IEEE Trans Biomed Eng , vol.53 , pp. 762-766
    • Chen, X.1    Zhou, X.2    Wong, S.3
  • 6
    • 33751510756 scopus 로고    scopus 로고
    • Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy
    • Yang X, Li H, Zhou X. Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans Circuits Syst I 2006; 53: 2405-2414.
    • (2006) IEEE Trans Circuits Syst I , vol.53 , pp. 2405-2414
    • Yang, X.1    Li, H.2    Zhou, X.3
  • 8
    • 77956942046 scopus 로고    scopus 로고
    • Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization
    • Jung C, Kim C. Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization. IEEE Trans Biomed Eng 2010; 57: 2600-2604.
    • (2010) IEEE Trans Biomed Eng , vol.57 , pp. 2600-2604
    • Jung, C.1    Kim, C.2
  • 9
    • 84862769958 scopus 로고    scopus 로고
    • Automatic segmentation of cell nuclei in Feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results
    • Nielsen B, Albregtsen F, Danielsen H. Automatic segmentation of cell nuclei in Feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results. Cytometry A 2012; 81A: 588-601.
    • (2012) Cytometry A , vol.81 A , pp. 588-601
    • Nielsen, B.1    Albregtsen, F.2    Danielsen, H.3
  • 10
    • 0031968289 scopus 로고    scopus 로고
    • Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections
    • Lockett S, Sudar D, Thompson C, Pinkel D, Gray J. Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections. Cytometry 1998; 31: 275-286.
    • (1998) Cytometry , vol.31 , pp. 275-286
    • Lockett, S.1    Sudar, D.2    Thompson, C.3    Pinkel, D.4    Gray, J.5
  • 11
    • 0035107394 scopus 로고    scopus 로고
    • Segmentation of nuclei and cells using membrane related protein markers
    • Ortiz de Solorzano C, Malladi R, Lelievre S, Lockett S. Segmentation of nuclei and cells using membrane related protein markers. J Microsc 2001; 201: 404-415.
    • (2001) J Microsc , vol.201 , pp. 404-415
    • Ortiz de Solorzano, C.1    Malladi, R.2    Lelievre, S.3    Lockett, S.4
  • 13
    • 34548299771 scopus 로고    scopus 로고
    • A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3d confocal microscope images
    • Lin G, Chawla M, Olson K, Barnes C, Guzowski J, Bjornsson C, Shain W, Roysam B. A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3d confocal microscope images. Cytometry A 2007; 71A: 724-736.
    • (2007) Cytometry A , vol.71 A , pp. 724-736
    • Lin, G.1    Chawla, M.2    Olson, K.3    Barnes, C.4    Guzowski, J.5    Bjornsson, C.6    Shain, W.7    Roysam, B.8
  • 14
    • 65549116620 scopus 로고    scopus 로고
    • A unified framework for automated 3-d segmentation of surface-stained living cells and a comprehensive segmentation evaluation
    • Hodneland E, Bukoreshtliev N, Eichler T, Tai X, Gurke S, Lundervold A, Gerdes H. A unified framework for automated 3-d segmentation of surface-stained living cells and a comprehensive segmentation evaluation. IEEE Trans Med Imaging 2009; 28: 720-738.
    • (2009) IEEE Trans Med Imaging , vol.28 , pp. 720-738
    • Hodneland, E.1    Bukoreshtliev, N.2    Eichler, T.3    Tai, X.4    Gurke, S.5    Lundervold, A.6    Gerdes, H.7
  • 15
    • 0018004847 scopus 로고
    • Picture thresholding using an iterative selection method
    • Ridler T, Calvard S. Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 1978; 8: 630-632.
    • (1978) IEEE Trans Syst Man Cybern , vol.8 , pp. 630-632
    • Ridler, T.1    Calvard, S.2
  • 16
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979; 9: 62-66.
    • (1979) IEEE Trans Syst Man Cybern , vol.9 , pp. 62-66
    • Otsu, N.1
  • 18
    • 0003626435 scopus 로고    scopus 로고
    • Digital Image Processing
    • 2nd ed. Upper Saddle River, NJ: Prentice Hall
    • Gonzalez R, Woods R. Digital Image Processing, 2nd ed. Upper Saddle River, NJ: Prentice Hall; 2002.
    • (2002)
    • Gonzalez, R.1    Woods, R.2
  • 19
    • 3042547731 scopus 로고    scopus 로고
    • Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections
    • Wählby C, Sintorn I, Erlandsson F, Borgefors G, Bengtsson E. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc 2004; 215: 67-76.
    • (2004) J Microsc , vol.215 , pp. 67-76
    • Wählby, C.1    Sintorn, I.2    Erlandsson, F.3    Borgefors, G.4    Bengtsson, E.5
  • 20
    • 73849143622 scopus 로고    scopus 로고
    • Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis
    • Li F, Zhou X, Ma J, Wong S. Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis. IEEE Trans Med Imaging 2010; 29: 96-105.
    • (2010) IEEE Trans Med Imaging , vol.29 , pp. 96-105
    • Li, F.1    Zhou, X.2    Ma, J.3    Wong, S.4
  • 21
    • 79851507983 scopus 로고    scopus 로고
    • Combining shape, texture and intensity features for cell nuclei extraction in pap smear images
    • Plissiti M, Nikou C, Charchanti A. Combining shape, texture and intensity features for cell nuclei extraction in pap smear images. Pattern Recogn Lett 2011; 32: 838-853.
    • (2011) Pattern Recogn Lett , vol.32 , pp. 838-853
    • Plissiti, M.1    Nikou, C.2    Charchanti, A.3
  • 22
    • 84865439855 scopus 로고    scopus 로고
    • Automatic segmentation and supervised learning-based selection of nuclei in cancer tissue images
    • Nandy K, Gudla P, Amundsen R, Meaburn K, Misteli T, Lockett S. Automatic segmentation and supervised learning-based selection of nuclei in cancer tissue images. Cytometry A 2012; 81A: 743-754.
    • (2012) Cytometry A , vol.81 A , pp. 743-754
    • Nandy, K.1    Gudla, P.2    Amundsen, R.3    Meaburn, K.4    Misteli, T.5    Lockett, S.6
  • 23
    • 0027608460 scopus 로고
    • Tracking deformable objects in the plane using an active contour model
    • Leymarie F, Levine M. Tracking deformable objects in the plane using an active contour model. IEEE Trans Pattern Anal Mach Intell 1993; 15: 617-634.
    • (1993) IEEE Trans Pattern Anal Mach Intell , vol.15 , pp. 617-634
    • Leymarie, F.1    Levine, M.2
  • 24
    • 0032305559 scopus 로고    scopus 로고
    • Unsupervised cell nucleus segmentation with active contours
    • Bamford P, Lovell B. Unsupervised cell nucleus segmentation with active contours. Signal Process 1998; 71: 203-213.
    • (1998) Signal Process , vol.71 , pp. 203-213
    • Bamford, P.1    Lovell, B.2
  • 25
    • 0033906873 scopus 로고    scopus 로고
    • Applying deformable templates for cell image segmentation
    • Garrido A, Pérez de la Blanca N. Applying deformable templates for cell image segmentation. Pattern Recogn 2000; 33: 821-832.
    • (2000) Pattern Recogn , vol.33 , pp. 821-832
    • Garrido, A.1    Pérez de la Blanca, N.2
  • 26
    • 25844480547 scopus 로고    scopus 로고
    • Unsupervised segmentation based on robust estimation and color active contour models
    • Yang L, Meer P, Foran D. Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans Inf Technol Biomed 2005; 9: 475-486.
    • (2005) IEEE Trans Inf Technol Biomed , vol.9 , pp. 475-486
    • Yang, L.1    Meer, P.2    Foran, D.3
  • 27
    • 65349111374 scopus 로고    scopus 로고
    • Segmentation of clustered nuclei with shape markers and marking function
    • Cheng J, Rajapakse J. Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans Biomed Eng 2009; 56: 741-748.
    • (2009) IEEE Trans Biomed Eng , vol.56 , pp. 741-748
    • Cheng, J.1    Rajapakse, J.2
  • 28
    • 1942532718 scopus 로고    scopus 로고
    • Level set analysis for leukocyte detection and tracking
    • Mukherjee D, Ray N, Acton S. Level set analysis for leukocyte detection and tracking. IEEE Trans Image Process 2004; 13: 562-572.
    • (2004) IEEE Trans Image Process , vol.13 , pp. 562-572
    • Mukherjee, D.1    Ray, N.2    Acton, S.3
  • 29
  • 30
    • 39449105350 scopus 로고    scopus 로고
    • Automatic segmentation of high-throughput RNAi fluorescent cellular images
    • Yan P, Zhou X, Shah M, Wong S. Automatic segmentation of high-throughput RNAi fluorescent cellular images. IEEE Trans Inf Technol Biomed 2008; 12: 109-117.
    • (2008) IEEE Trans Inf Technol Biomed , vol.12 , pp. 109-117
    • Yan, P.1    Zhou, X.2    Shah, M.3    Wong, S.4
  • 31
    • 0032028944 scopus 로고    scopus 로고
    • Snakes, shapes, and gradient vector flow
    • Xu C, Prince J. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 1998; 7: 359-369.
    • (1998) IEEE Trans Image Process , vol.7 , pp. 359-369
    • Xu, C.1    Prince, J.2
  • 32
    • 84867839682 scopus 로고    scopus 로고
    • Overlapping cell nuclei segmentation using a spatially adaptive active physical model
    • Plissiti M, Nikou C. Overlapping cell nuclei segmentation using a spatially adaptive active physical model. IEEE Trans Image Process 2012; 21: 4568-4580.
    • (2012) IEEE Trans Image Process , vol.21 , pp. 4568-4580
    • Plissiti, M.1    Nikou, C.2
  • 34
    • 79959616747 scopus 로고    scopus 로고
    • 3D active meshes: Fast discrete deformable models for cell tracking in 3D time-lapse microscopy
    • Dufour A, Thibeaux R, Labruyere E, Guillen N, Olivo J. 3D active meshes: Fast discrete deformable models for cell tracking in 3D time-lapse microscopy. IEEE Trans Image Process 2011; 20: 1925-1937.
    • (2011) IEEE Trans Image Process , vol.20 , pp. 1925-1937
    • Dufour, A.1    Thibeaux, R.2    Labruyere, E.3    Guillen, N.4    Olivo, J.5
  • 35
    • 77955339493 scopus 로고    scopus 로고
    • Cell nuclei and cytoplasm joint segmentation using the sliding band filter
    • Quelhas P, Marcuzzo M, Mendonca AM, Campilho A. Cell nuclei and cytoplasm joint segmentation using the sliding band filter. IEEE Trans Med Imaging 2010; 29: 1463-1473.
    • (2010) IEEE Trans Med Imaging , vol.29 , pp. 1463-1473
    • Quelhas, P.1    Marcuzzo, M.2    Mendonca, A.M.3    Campilho, A.4
  • 36
    • 84865374061 scopus 로고    scopus 로고
    • Gradient convergence filters and a phase congruency approach for in vivo cell nuclei detection
    • Esteves T, Quelhas P, Mendonça A, Campilho A. Gradient convergence filters and a phase congruency approach for in vivo cell nuclei detection. Mach Vision Appl 2012; 23: 623-638.
    • (2012) Mach Vision Appl , vol.23 , pp. 623-638
    • Esteves, T.1    Quelhas, P.2    Mendonça, A.3    Campilho, A.4
  • 37
    • 42949161981 scopus 로고    scopus 로고
    • A high-throughput system for segmenting nuclei using multiscale techniques
    • Gudla P, Nandy K, Collins J, Meaburn K, Misteli T, Lockett S. A high-throughput system for segmenting nuclei using multiscale techniques. Cytometry A 2008; 73A: 451-466.
    • (2008) Cytometry A , vol.73 A , pp. 451-466
    • Gudla, P.1    Nandy, K.2    Collins, J.3    Meaburn, K.4    Misteli, T.5    Lockett, S.6
  • 39
    • 26444491075 scopus 로고    scopus 로고
    • An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue
    • Luck B, Carlson K, Bovik A, Richards-Kortum R. An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue. IEEE Trans Image Process 2005; 14: 1265-1276.
    • (2005) IEEE Trans Image Process , vol.14 , pp. 1265-1276
    • Luck, B.1    Carlson, K.2    Bovik, A.3    Richards-Kortum, R.4
  • 40
    • 42649114797 scopus 로고    scopus 로고
    • Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening
    • Chen C, Li H, Zhou X, Wong S. Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening. J Microsc 2008; 230: 177-191.
    • (2008) J Microsc , vol.230 , pp. 177-191
    • Chen, C.1    Li, H.2    Zhou, X.3    Wong, S.4
  • 41
    • 59149092778 scopus 로고    scopus 로고
    • Graph-based tools for microscopic cellular image segmentation
    • Ta V, Lézoray O, Elmoataz A, Schüpp S. Graph-based tools for microscopic cellular image segmentation. Pattern Recogn 2009; 42: 1113-1125.
    • (2009) Pattern Recogn , vol.42 , pp. 1113-1125
    • Ta, V.1    Lézoray, O.2    Elmoataz, A.3    Schüpp, S.4
  • 42
    • 77950245872 scopus 로고    scopus 로고
    • Improved automatic detection and segmentation of cell nuclei in histopathology images
    • Al-Kofahi Y, Lassoued W, Lee W, Roysam B. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 2010; 57: 841-852.
    • (2010) IEEE Trans Biomed Eng , vol.57 , pp. 841-852
    • Al-Kofahi, Y.1    Lassoued, W.2    Lee, W.3    Roysam, B.4
  • 43
    • 0035263070 scopus 로고    scopus 로고
    • Model-based detection, segmentation, and classification for image analysis using on-line shape learning
    • Lee K, Street W. Model-based detection, segmentation, and classification for image analysis using on-line shape learning. Mach Vision Appl 2003; 13: 222-233.
    • (2003) Mach Vision Appl , vol.13 , pp. 222-233
    • Lee, K.1    Street, W.2
  • 44
    • 0037844845 scopus 로고    scopus 로고
    • An adaptive resource-allocating network for automated detection, segmentation, and classification of breast cancer nuclei topic area: image processing and recognition
    • Lee K, Street W. An adaptive resource-allocating network for automated detection, segmentation, and classification of breast cancer nuclei topic area: image processing and recognition. IEEE Trans Neural Netw 2003; 14: 680-687.
    • (2003) IEEE Trans Neural Netw , vol.14 , pp. 680-687
    • Lee, K.1    Street, W.2
  • 45
    • 27244448858 scopus 로고    scopus 로고
    • Self-learning segmentation and classification of cell-nuclei in 3D volumetric data using voxel-wise gray scale invariants
    • Fehr J, Ronneberger O, Kurz H, Burkhardt H. Self-learning segmentation and classification of cell-nuclei in 3D volumetric data using voxel-wise gray scale invariants. Pattern Recogn 2005; 3663: 377-384.
    • (2005) Pattern Recogn , vol.3663 , pp. 377-384
    • Fehr, J.1    Ronneberger, O.2    Kurz, H.3    Burkhardt, H.4
  • 46
    • 33744998910 scopus 로고    scopus 로고
    • Supervised learning-based cell image segmentation for p53 immunohistochemistry
    • Mao K, Zhao P, Tan P. Supervised learning-based cell image segmentation for p53 immunohistochemistry. IEEE Trans Biomed Eng 2006; 53: 1153-1163.
    • (2006) IEEE Trans Biomed Eng , vol.53 , pp. 1153-1163
    • Mao, K.1    Zhao, P.2    Tan, P.3
  • 47
    • 78649247761 scopus 로고    scopus 로고
    • Unsupervised segmentation of overlapped nuclei using Bayesian classification
    • Jung C, Kim C, Chae S, Oh S. Unsupervised segmentation of overlapped nuclei using Bayesian classification. IEEE Trans Biomed Eng 2010; 57: 2825-2832.
    • (2010) IEEE Trans Biomed Eng , vol.57 , pp. 2825-2832
    • Jung, C.1    Kim, C.2    Chae, S.3    Oh, S.4
  • 48
    • 85013881961 scopus 로고    scopus 로고
    • Statistical Parametric Mapping: The Analysis of Functional Brain Images
    • editors. Waltham, Massachusetts
    • Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, editors. Statistical Parametric Mapping: The Analysis of Functional Brain Images. Waltham, Massachusetts: Academic Press; 2006.
    • (2006) Academic Press
    • Penny, W.D.1    Friston, K.J.2    Ashburner, J.T.3    Kiebel, S.J.4    Nichols, T.E.5
  • 49
  • 50
    • 42049110309 scopus 로고    scopus 로고
    • Deformation-based nuclear morphometry: Capturing nuclear shape variation in hela cells
    • Rohde GK, Ribeiro AJS, Dahl KN, Murphy RF. Deformation-based nuclear morphometry: Capturing nuclear shape variation in hela cells. Cytometry A 2008; 73A: 341-350.
    • (2008) Cytometry A , vol.73 A , pp. 341-350
    • Rohde, G.K.1    Ribeiro, A.J.S.2    Dahl, K.N.3    Murphy, R.F.4
  • 51
    • 23844471989 scopus 로고    scopus 로고
    • Statistical shape model generation using nonrigid deformation of a template mesh.
    • SPIE International Proceedings on Medical Imaging
    • Heitz G, Rohlfing T, Maurer CJr. Statistical shape model generation using nonrigid deformation of a template mesh. In: SPIE International Proceedings on Medical Imaging 2005;5747:1411-1421.
    • (2005) , vol.5747 , pp. 1411-1421
    • Heitz, G.1    Rohlfing, T.2    Maurer Jr., C.3
  • 52
    • 27944506780 scopus 로고    scopus 로고
    • San Diego: Systems Neurobiology Laboratory, University of California at San Diego
    • Shlens J. A Tutorial on Principal Component Analysis. San Diego: Systems Neurobiology Laboratory, University of California at San Diego; 2005.
    • (2005) A Tutorial on Principal Component Analysis
    • Shlens, J.1
  • 53
    • 24644441054 scopus 로고    scopus 로고
    • Level set evolution without re-initialization: A new variational formulation.
    • IEEE International Proceedings of Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society
    • Li C, Xu C, Gui C, Fox M. Level set evolution without re-initialization: A new variational formulation. In: IEEE International Proceedings of Computer Vision and Pattern Recognition 2005;1:430-436. Washington, DC: IEEE Computer Society.
    • (2005) , vol.1 , pp. 430-436
    • Li, C.1    Xu, C.2    Gui, C.3    Fox, M.4
  • 55
    • 47949104536 scopus 로고    scopus 로고
    • Synthetic images of high-throughput microscopy for validation of image analysis methods.
    • Washington, DC: IEEE Computer Society
    • Lehmussola A, Ruusuvuori P, Selinummi J, Rajala T, Yli-Harja O. Synthetic images of high-throughput microscopy for validation of image analysis methods. In: Proceedings of IEEE 2008;96:1348-1360. Washington, DC: IEEE Computer Society.
    • (2008) Proceedings of IEEE , vol.96 , pp. 1348-1360
    • Lehmussola, A.1    Ruusuvuori, P.2    Selinummi, J.3    Rajala, T.4    Yli-Harja, O.5
  • 56
    • 70449356941 scopus 로고    scopus 로고
    • Nuclear segmentation in microscope cell images: A hand-segmented dataset and comparison of algorithms.
    • Washington, DC: IEEE Computer Society
    • Coelho L, Shariff A, Murphy R. Nuclear segmentation in microscope cell images: A hand-segmented dataset and comparison of algorithms. In: IEEE International Symposium on Biomedical Imaging 2009;1:518-521. Washington, DC: IEEE Computer Society.
    • (2009) IEEE International Symposium on Biomedical Imaging , vol.1 , pp. 518-521
    • Coelho, L.1    Shariff, A.2    Murphy, R.3
  • 57
    • 77951195945 scopus 로고    scopus 로고
    • Detection and classification of thyroid follicular lesions based on nuclear structure from histopathology images
    • Wang W, Ozolek JA, Rohde GK. Detection and classification of thyroid follicular lesions based on nuclear structure from histopathology images. Cytometry A 2010; 77A: 485-494.
    • (2010) Cytometry A , vol.77 A , pp. 485-494
    • Wang, W.1    Ozolek, J.A.2    Rohde, G.K.3
  • 58
    • 0000250265 scopus 로고
    • Measures of the amount of ecologic association between species
    • Dice L. Measures of the amount of ecologic association between species. Ecology 1945; 26: 297-302.
    • (1945) Ecology , vol.26 , pp. 297-302
    • Dice, L.1
  • 59
    • 78649255250 scopus 로고    scopus 로고
    • Color skin segmentation using k-means cluster
    • Ravichandran K, Ananthi B. Color skin segmentation using k-means cluster. Int J Comput Appl Math 2009; 4: 153-157.
    • (2009) Int J Comput Appl Math , vol.4 , pp. 153-157
    • Ravichandran, K.1    Ananthi, B.2
  • 64
    • 79951782568 scopus 로고    scopus 로고
    • A study of color space transformation method using nonuniform segmentation of color space source
    • Deng J, Hu J, Wu J. A study of color space transformation method using nonuniform segmentation of color space source. J Comput 2011; 6: 288-296.
    • (2011) J Comput , vol.6 , pp. 288-296
    • Deng, J.1    Hu, J.2    Wu, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.