메뉴 건너뛰기




Volumn 6, Issue 1, 2013, Pages 47-59

Adaboost and bagging ensemble approaches with neural network as base learner for financial distress prediction of Chinese construction and Real Estate Companies

Author keywords

AdaBoost; Bagging; Classifier ensemble; Construction and real estate companies; Financial distress prediction; Neural network

Indexed keywords

BACKPROPAGATION; ECONOMICS; ELECTRONIC TRADING; FINANCIAL MARKETS; FORECASTING; INVESTMENTS; NEURAL NETWORKS;

EID: 84876711925     PISSN: 18744796     EISSN: None     Source Type: Journal    
DOI: 10.2174/2213275911306010007     Document Type: Article
Times cited : (20)

References (45)
  • 1
    • 79954417582 scopus 로고    scopus 로고
    • Social risks for international players in the construction market: A China study
    • X. Zhang, "Social risks for international players in the construction market: A China study", Habitat International, Vol. 35, no. 3, pp. 514-519, 2011.
    • (2011) Habitat International , vol.35 , Issue.3 , pp. 514-519
    • Zhang, X.1
  • 2
    • 0042645563 scopus 로고
    • A comparison of ratios of successful industrial enterprises with those of failed Firms
    • Vol. 11, pp. 656-662, Vol. 12, pp. 727-731
    • P.J. Fitzpartrick, "A comparison of ratios of successful industrial enterprises with those of failed Firms", Certified Public Account-ant, Vol. 10, pp. 598-605, Vol. 11, pp. 656-662, Vol. 12, pp. 727-731, 1932.
    • (1932) Certified Public Account-ant , vol.10 , pp. 598-605
    • Fitzpartrick, P.J.1
  • 3
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure
    • W. Beaver, "Financial ratios as predictors of failure", J. Account. Res., Vol. 4, pp. 71-111, 1966.
    • (1966) J. Account. Res , vol.4 , pp. 71-111
    • Beaver, W.1
  • 4
    • 84980104458 scopus 로고
    • Financial ratios discriminant analysis and the predic-tion of corporate bankruptcy
    • E.I. Altman, "Financial ratios discriminant analysis and the predic-tion of corporate bankruptcy", J. Finance, Vol. 23(4), pp. 589-609, 1968.
    • (1968) J. Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 5
    • 0000666375 scopus 로고
    • Financial ratios and probabilistic prediction of bank-ruptcy
    • J.A. Ohlson, "Financial ratios and probabilistic prediction of bank-ruptcy", Journal of Accounting Research, Vol. 18, no. 1, pp. 109-131, 1980.
    • (1980) Journal of Accounting Research , vol.18 , Issue.1 , pp. 109-131
    • Ohlson, J.A.1
  • 6
    • 0001273663 scopus 로고
    • Neural network models and the prediction of bank bankruptcy
    • K.Y. Tam, "Neural network models and the prediction of bank bankruptcy", Omega, Vol. 19(5), pp. 429-445, 1991.
    • (1991) Omega , vol.19 , Issue.5 , pp. 429-445
    • Tam, K.Y.1
  • 7
    • 0030414816 scopus 로고    scopus 로고
    • Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction
    • H. Jo, and I. Han, "Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction", Exp. Syst. Applicat., Vol. 11, no. 4, pp. 415-422, 1996.
    • (1996) Exp. Syst. Applicat , vol.11 , Issue.4 , pp. 415-422
    • Jo, H.1    Han, I.2
  • 8
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reason-ing, neural networks, and discriminant analysis
    • H. Jo and I. Han, "Bankruptcy prediction using case-based reason-ing, neural networks, and discriminant analysis", Exp. Syst. Appli-cat. Vol. 13(2), pp. 97-108, 1997.
    • (1997) Exp. Syst. Appli-cat , vol.13 , Issue.2 , pp. 97-108
    • Jo, H.1    Han, I.2
  • 9
    • 0007687443 scopus 로고    scopus 로고
    • Genetic algorithms applications in the analysis of insolvency risk
    • F. Varetto, "Genetic algorithms applications in the analysis of insolvency risk", J. Banking & Finance, Vol. 22, no. 10-11, pp. 1421-1439, 1998.
    • (1998) J. Banking & Finance , vol.22 , Issue.10-11 , pp. 1421-1439
    • Varetto, F.1
  • 10
    • 0033116872 scopus 로고    scopus 로고
    • Business failure prediction using rough sets
    • A.I. Dimitras, R. Slowinski and R. Susmaga, "Business failure prediction using rough sets", Euro. J. Operat. Res., Vol. 114, no. 2, pp. 263-280, 1999.
    • (1999) Euro. J. Operat. Res , vol.114 , Issue.2 , pp. 263-280
    • Dimitras, A.I.1    Slowinski, R.2    Susmaga, R.3
  • 11
    • 0007744265 scopus 로고    scopus 로고
    • Developing a bankruptcy prediction model by rough sets theory
    • T. E. McKee, "Developing a bankruptcy prediction model by rough sets theory", Int. J. Intelligent Syst. Account., Finance & Manag., Vol. 9(3), pp. 159-173, 2000.
    • (2000) Int. J. Intelligent Syst. Account., Finance & Manag , vol.9 , Issue.3 , pp. 159-173
    • McKee, T.E.1
  • 12
    • 0036776357 scopus 로고    scopus 로고
    • A genetic algorithm application in bank-ruptcy prediction modeling
    • K.-S. Shin and Y.-J. Lee, "A genetic algorithm application in bank-ruptcy prediction modeling", Exp. Syst. Applicat., Vol. 23, no. 3, pp. 321-328, 2002.
    • (2002) Exp. Syst. Applicat , vol.23 , Issue.3 , pp. 321-328
    • Shin, K.-S.1    Lee, Y.-J.2
  • 13
    • 0036776641 scopus 로고    scopus 로고
    • A case-based reasoning with the feature weights derived by hierarchy analytic process for bankruptcy pre-diction
    • C. S. Park, and I. Han, "A case-based reasoning with the feature weights derived by hierarchy analytic process for bankruptcy pre-diction", Exp. Syst. Applicat., Vol. 23, no. 3, pp. 255-264, 2002.
    • (2002) Exp. Syst. Applicat , vol.23 , Issue.3 , pp. 255-264
    • Park, C.S.1    Han, I.2
  • 14
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • K.-S. Shin, T. S. Lee and H.-J. Kim, "An application of support vector machines in bankruptcy prediction model", Exp. Syst. Appli-cat, Vol. 28, no. 1, pp. 127-135, 2005.
    • (2005) Exp. Syst. Appli-cat , vol.28 , Issue.1 , pp. 127-135
    • Shin, K.-S.1    Lee, T.S.2    Kim, H.-J.3
  • 15
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • J. H. Min and Y.-C. Lee, "Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters", Exp. Syst. Applicat., Vol. 28, no. 4, pp. 128-134, 2005.
    • (2005) Exp. Syst. Applicat , vol.28 , Issue.4 , pp. 128-134
    • Min, J.H.1    Lee, Y.-C.2
  • 16
    • 30944461783 scopus 로고    scopus 로고
    • Bank-ruptcy prediction with neural logit networks by means of grammar-guided genetic programming
    • Tsakonas, G. Dounias, M. Doumpos, and C. Zopounidis, "Bank-ruptcy prediction with neural logit networks by means of grammar-guided genetic programming", Exp. Syst. Applicat., Vol. 30, no. 3, pp. 449-461, 2006.
    • (2006) Exp. Syst. Applicat , vol.30 , Issue.3 , pp. 449-461
    • Tsakonas, G.D.1    Doumpos, M.2    Zopounidis, C.3
  • 17
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural net-works
    • E. Alfaro, N. Garcia, M. Gamez, and D. Elizondo, "Bankruptcy forecasting: An empirical comparison of AdaBoost and neural net-works", Decision Support Syst., Vol. 45, no. 1, pp. 110-122, 2008.
    • (2008) Decision Support Syst , vol.45 , Issue.1 , pp. 110-122
    • Alfaro, E.1    Garcia, N.2    Gamez, M.3    Elizondo, D.4
  • 18
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensem-ble of classifiers for bankruptcy prediction and credit scoring
    • L. Nanni, and A. Lumini, "An experimental comparison of ensem-ble of classifiers for bankruptcy prediction and credit scoring", Exp. Syst. Applicat., Vol. 36, no. 2, pp. 3028-3033, 2009.
    • (2009) Exp. Syst. Applicat , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 19
    • 70449532144 scopus 로고    scopus 로고
    • Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks
    • F.-M. Tseng and Y.-C. Hu, "Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks", Exp. Syst. Applicat., Vol. 37, no. 3, pp. 1846-1853, 2010.
    • (2010) Exp. Syst. Applicat , vol.37 , Issue.3 , pp. 1846-1853
    • Tseng, F.-M.1    Hu, Y.-C.2
  • 20
    • 78650417769 scopus 로고    scopus 로고
    • Multiple classifier architectures and their application to credit risk assessment
    • S. Finlay, "Multiple classifier architectures and their application to credit risk assessment", Euro. J. Operation. Res., Vol. 210, no. 2, pp. 368-378, 2011.
    • (2011) Euro. J. Operation. Res , vol.210 , Issue.2 , pp. 368-378
    • Finlay, S.1
  • 21
    • 84455191888 scopus 로고    scopus 로고
    • Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples-Evidence from the Chinese hotel industry
    • H. Li and J. Sun, "Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples-Evidence from the Chinese hotel industry", Tourism Manag., Vol. 33, no. 3, pp. 622-634, 2012.
    • (2012) Tourism Manag , vol.33 , Issue.3 , pp. 622-634
    • Li, H.1    Sun, J.2
  • 22
    • 79959278741 scopus 로고    scopus 로고
    • Applying Z-score model to distinguish insolvent construction companies in China
    • S.T. Ng, J. M. W. Wong, and J. Zhang, "Applying Z-score model to distinguish insolvent construction companies in China", Habitat Int., Vol. 35, no. 4, pp. 599-607, 2011.
    • (2011) Habitat Int , vol.35 , Issue.4 , pp. 599-607
    • Ng, S.T.1    Wong, J.M.W.2    Zhang, J.3
  • 23
    • 80053641608 scopus 로고    scopus 로고
    • An enforced support vector machine model for construction contractor default prediction
    • H. P. Tserng, G.-F. Lin, L. K. Tsai and P.-C. Chen, "An enforced support vector machine model for construction contractor default prediction", Automat. Construct., Vol. 20(8), pp. 1242-1249, 2011.
    • (2011) Automat. Construct , vol.20 , Issue.8 , pp. 1242-1249
    • Tserng, H.P.1    Lin, G.-F.2    Tsai, L.K.3    Chen, P.-C.4
  • 24
    • 84858079765 scopus 로고    scopus 로고
    • Performance assessment of construction companies: A study of factors promoting financial soundness and innovation in the industry
    • M. Horta, A. S. Camanho and M. Costa, "Performance assessment of construction companies: A study of factors promoting financial soundness and innovation in the industry", Int. J. Product. Econ., Vol. 137(1), pp. 84-93, 2012.
    • (2012) Int. J. Product. Econ , vol.137 , Issue.1 , pp. 84-93
    • Horta, M.1    Camanho, A.S.2    Costa, M.3
  • 27
    • 13544265385 scopus 로고    scopus 로고
    • A threshold varying artificial neural network approach for classification and its application to bankruptcy predic-tion problem
    • P.C. Pendharkar, "A threshold varying artificial neural network approach for classification and its application to bankruptcy predic-tion problem", Comput. Operat. Res., Vol. 32, pp. 2561-2582, 2005.
    • (2005) Comput. Operat. Res , vol.32 , pp. 2561-2582
    • Pendharkar, P.C.1
  • 28
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, "The strength of weak learnability", Machine Learning, Vol. 5(2), pp. 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 29
    • 58149321460 scopus 로고
    • Boosting a weak algorithm by majority
    • Freund, Y. Boosting a weak algorithm by majority. Informat. Com-putat., Vol.121(2), pp. 256-285, 1995.
    • (1995) Informat. Com-putat , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 30
    • 0002552358 scopus 로고
    • Improving performance in neural networks using boosting algorithm
    • In: S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.)
    • H. Drucker, R. Schapire and P. Simard, "Improving performance in neural networks using boosting algorithm", In: S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.), Adv. Neural Informat. Process. Syst., pp.42-49, 1993.
    • (1993) Adv. Neural Informat. Process. Syst , pp. 42-49
    • Drucker, H.1    Schapire, R.2    Simard, P.3
  • 32
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors", Machine Learning, Vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 33
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accu-racy
    • L. Breiman, "Randomizing outputs to increase prediction accu-racy", Machine Learning, Vol. 40, no. 3, pp. 229-242, 2000.
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.