-
1
-
-
1542743726
-
C60: buckminsterfullerene.
-
Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature 1985, 318:162-163.
-
(1985)
Nature
, vol.318
, pp. 162-163
-
-
Kroto, H.W.1
Heath, J.R.2
O'Brien, S.C.3
Curl, R.F.4
Smalley, R.E.5
-
2
-
-
45249086471
-
Carbon Nanotubes.
-
eds. New York, NY: Springer
-
Ajayan PM, Zhou OZ. Carbon Nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS, eds. Topics of Applied Physics. New York, NY: Springer; 2008, 13-61.
-
(2008)
Topics of Applied Physics.
, pp. 13-61
-
-
Ajayan, P.M.1
Zhou, O.Z.2
Jorio, A.3
Dresselhaus, G.4
Dresselhaus, M.S.5
-
3
-
-
79952165582
-
Emerging applications of carbon nanotubes.
-
Schnorr JM, Swager TM. Emerging applications of carbon nanotubes. Chem Mater 2011, 23:646-657.
-
(2011)
Chem Mater
, vol.23
, pp. 646-657
-
-
Schnorr, J.M.1
Swager, T.M.2
-
4
-
-
84864250902
-
Graphene photonics, plasmonics, and broadband optoelectronic devices.
-
Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6:3677-3694.
-
(2012)
ACS Nano
, vol.6
, pp. 3677-3694
-
-
Bao, Q.1
Loh, K.P.2
-
5
-
-
82955229764
-
Controlling graphene properties through chemistry.
-
Gogotsi Y. Controlling graphene properties through chemistry. J Phys Chem Lett 2011, 2:2509-2510.
-
(2011)
J Phys Chem Lett
, vol.2
, pp. 2509-2510
-
-
Gogotsi, Y.1
-
6
-
-
0342819025
-
Helical microtubules of graphitic carbon.
-
Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354:56-58.
-
(1991)
Nature
, vol.354
, pp. 56-58
-
-
Iijima, S.1
-
7
-
-
36149007340
-
The band theory of graphite.
-
Wallace P. The band theory of graphite. Phys Rev 1947, 71:622-634.
-
(1947)
Phys Rev
, vol.71
, pp. 622-634
-
-
Wallace, P.1
-
9
-
-
7444220645
-
Electric field effect in atomically thin carbon films.
-
Novoselov KS, Geim KA, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004, 306:666-669.
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, K.A.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
10
-
-
0038040616
-
Gram-scale CCVD synthesis of double-walled carbon nanotubes.
-
doi:10.1039/b301514a
-
Flahaut E, Bacsa R, Peigney A, Laurent C. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem Commun 2003, 20:1442. doi:10.1039/b301514a.
-
(2003)
Chem Commun
, vol.20
, pp. 1442
-
-
Flahaut, E.1
Bacsa, R.2
Peigney, A.3
Laurent, C.4
-
11
-
-
80855124760
-
Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance.
-
Stoner BR, Raut AS, Brown B, Parker CB, Glass JT. Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance. Appl Phys Lett 2011, 99:183104.
-
(2011)
Appl Phys Lett
, vol.99
, pp. 183104
-
-
Stoner, B.R.1
Raut, A.S.2
Brown, B.3
Parker, C.B.4
Glass, J.T.5
-
12
-
-
79960177810
-
Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications.
-
Yu K, Lu G, Bo Z, Mao S, Chen J. Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J Phys Chem Lett 2011, 2:1556-1562.
-
(2011)
J Phys Chem Lett
, vol.2
, pp. 1556-1562
-
-
Yu, K.1
Lu, G.2
Bo, Z.3
Mao, S.4
Chen, J.5
-
13
-
-
33847625951
-
A novel hybrid carbon material.
-
Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, Queipo P, Moisala A, Gonzalez D, Lientschnig G, et al. A novel hybrid carbon material. Nat Nanotechnol 2007, 2: 156-161.
-
(2007)
Nat Nanotechnol
, vol.2
, pp. 156-161
-
-
Nasibulin, A.G.1
Pikhitsa, P.V.2
Jiang, H.3
Brown, D.P.4
Krasheninnikov, A.V.5
Anisimov, A.S.6
Queipo, P.7
Moisala, A.8
Gonzalez, D.9
Lientschnig, G.10
-
14
-
-
34548503874
-
Investigations of nanobud formation.
-
Nasibulin AG, Anisimov AS, Pikhitsa PV, Jiang H, Brown DP, Choi M, Kauppinen EI. Investigations of nanobud formation. Chem Phys Lett 2007, 446: 109-114.
-
(2007)
Chem Phys Lett
, vol.446
, pp. 109-114
-
-
Nasibulin, A.G.1
Anisimov, A.S.2
Pikhitsa, P.V.3
Jiang, H.4
Brown, D.P.5
Choi, M.6
Kauppinen, E.I.7
-
15
-
-
84867384989
-
Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size.
-
Mohanty N, Moore D, Xu Z, Sreeprasad TS, Nagaraja A, Rodriguez AA, Berry V. Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nat Commun 2012, 3:844.
-
(2012)
Nat Commun
, vol.3
, pp. 844
-
-
Mohanty, N.1
Moore, D.2
Xu, Z.3
Sreeprasad, T.S.4
Nagaraja, A.5
Rodriguez, A.A.6
Berry, V.7
-
16
-
-
65249133533
-
Narrow graphene nanoribbons from carbon nanotubes.
-
Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458:877-880.
-
(2009)
Nature
, vol.458
, pp. 877-880
-
-
Jiao, L.1
Zhang, L.2
Wang, X.3
Diankov, G.4
Dai, H.5
-
17
-
-
65249185111
-
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
-
Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458:872-876.
-
(2009)
Nature
, vol.458
, pp. 872-876
-
-
Kosynkin, D.V.1
Higginbotham, A.L.2
Sinitskii, A.3
Lomeda, J.R.4
Dimiev, A.5
Price, B.K.6
Tour, J.M.7
-
18
-
-
58149463440
-
Synthesis of amphiphilic graphene nanoplatelets.
-
Shen J, Hu Y, Li C, Qin C, Ye M. Synthesis of amphiphilic graphene nanoplatelets. Small 2009, 5: 82-85.
-
(2009)
Small
, vol.5
, pp. 82-85
-
-
Shen, J.1
Hu, Y.2
Li, C.3
Qin, C.4
Ye, M.5
-
19
-
-
66749182278
-
Layer-by-layer self-assembly of graphene nanoplatelets.
-
Shen J, Hu Y, Li C, Qin C, Shi M, Ye M. Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 2009, 25:6122-6128.
-
(2009)
Langmuir
, vol.25
, pp. 6122-6128
-
-
Shen, J.1
Hu, Y.2
Li, C.3
Qin, C.4
Shi, M.5
Ye, M.6
-
20
-
-
4744355839
-
Structural analysis of a carbon foam formed by high pulse-rate laser ablation.
-
Rode AV, Hyde ST, Gamaly EG, Elliman RG, McKenzie DR, Bulcock S. Structural analysis of a carbon foam formed by high pulse-rate laser ablation. Appl Phys A: Mater Sci Process 1999, 69:S755-S758.
-
(1999)
Appl Phys A: Mater Sci Process
, vol.69
-
-
Rode, A.V.1
Hyde, S.T.2
Gamaly, E.G.3
Elliman, R.G.4
McKenzie, D.R.5
Bulcock, S.6
-
21
-
-
84863191323
-
3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing.
-
Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P. 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 2012, 4:3129-3133.
-
(2012)
ACS Appl Mater Interfaces
, vol.4
, pp. 3129-3133
-
-
Dong, X.1
Wang, X.2
Wang, L.3
Song, H.4
Zhang, H.5
Huang, W.6
Chen, P.7
-
22
-
-
67649954754
-
Nanodiamonds for nanomedicine.
-
Xing Y, Dai L. Nanodiamonds for nanomedicine. Nanomedicine 2009, 4:207-218.
-
(2009)
Nanomedicine
, vol.4
, pp. 207-218
-
-
Xing, Y.1
Dai, L.2
-
24
-
-
33845377758
-
Lanthanum complexes of spheroidal carbon shells.
-
Heath JR, O'Brien SC, Zhang Q, Lui Y, Curl RF, Kroto HW, Tittel FK, Smalley RE. Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 1985, 107:7779-7780.
-
(1985)
J Am Chem Soc
, vol.107
, pp. 7779-7780
-
-
Heath, J.R.1
O'Brien, S.C.2
Zhang, Q.3
Lui, Y.4
Curl, R.F.5
Kroto, H.W.6
Tittel, F.K.7
Smalley, R.E.8
-
25
-
-
84857527175
-
Competition for graphene: graphynes with direction-dependent dirac cones.
-
Malko D, Neiss C, Viñes F, Görling A. Competition for graphene: graphynes with direction-dependent dirac cones. Phys Rev Lett 2012, 108:6804-6808.
-
(2012)
Phys Rev Lett
, vol.108
, pp. 6804-6808
-
-
Malko, D.1
Neiss, C.2
Viñes, F.3
Görling, A.4
-
26
-
-
77958504099
-
The era of carbon allotropes.
-
Hirsch A. The era of carbon allotropes. Nat Mater 2010, 9:868-871.
-
(2010)
Nat Mater
, vol.9
, pp. 868-871
-
-
Hirsch, A.1
-
27
-
-
0036311229
-
Covalent chemistry of single-wall carbon nanotubes.
-
Bahr JL, Tour JM. Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 2002, 12: 1952-1958.
-
(2002)
J Mater Chem
, vol.12
, pp. 1952-1958
-
-
Bahr, J.L.1
Tour, J.M.2
-
29
-
-
47249102439
-
Electromechanical actuation of single-walled carbon nanotubes: an ab initio study.
-
Mirfakhrai T, Krishna-Prasad R, Nojeh A, Madden JDW. Electromechanical actuation of single-walled carbon nanotubes: an ab initio study. Nanotechnology 2008, 19:315706.
-
(2008)
Nanotechnology
, vol.19
, pp. 315706
-
-
Mirfakhrai, T.1
Krishna-Prasad, R.2
Nojeh, A.3
Madden, J.D.W.4
-
30
-
-
33744469329
-
Electronic confinement and coherence in patterned epitaxial graphene.
-
Berger C. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312:1191-1196.
-
(2006)
Science
, vol.312
, pp. 1191-1196
-
-
Berger, C.1
-
31
-
-
84876478004
-
-
Eight allotropes of carbon. Available at: (Accessed August 22, 2012)
-
Ströck M. Eight allotropes of carbon. Available at: http://en.wikipedia.org/wiki/File:Eight_Allotropes_of_Carbon.png (Accessed August 22, 2012).
-
-
-
Ströck, M.1
-
32
-
-
84862523690
-
Can graphene oxide cause damage to eyesight?
-
Yan L, Wang Y, Xu X, Zeng C, Hou J, Lin M, Xu J, Sun F, Huang X, Dai L, et al. Can graphene oxide cause damage to eyesight? Chem Res Toxicol 2012, 25: 1265-1270.
-
(2012)
Chem Res Toxicol
, vol.25
, pp. 1265-1270
-
-
Yan, L.1
Wang, Y.2
Xu, X.3
Zeng, C.4
Hou, J.5
Lin, M.6
Xu, J.7
Sun, F.8
Huang, X.9
Dai, L.10
-
33
-
-
80053318851
-
Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.
-
Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 2011, 5:6971-6980.
-
(2011)
ACS Nano
, vol.5
, pp. 6971-6980
-
-
Liu, S.1
Zeng, T.H.2
Hofmann, M.3
Burcombe, E.4
Wei, J.5
Jiang, R.6
Kong, J.7
Chen, Y.8
-
34
-
-
32044445745
-
The biocompatibility of carbon nanotubes.
-
Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon 2006, 44:1034-1047.
-
(2006)
Carbon
, vol.44
, pp. 1034-1047
-
-
Smart, S.K.1
Cassady, A.I.2
Lu, G.Q.3
Martin, D.J.4
-
35
-
-
14744304334
-
Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene.
-
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005, 39:1378-1383.
-
(2005)
Environ Sci Technol
, vol.39
, pp. 1378-1383
-
-
Jia, G.1
Wang, H.2
Yan, L.3
Wang, X.4
Pei, R.5
Yan, T.6
Zhao, Y.7
Guo, X.8
-
36
-
-
84859119714
-
In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene.
-
doi:10.1021/nn204625e
-
Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, Nayak TR, Goel S, Bean J, Theuer CP, et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 2012, 6:2361-2370. doi:10.1021/nn204625e.
-
(2012)
ACS Nano
, vol.6
, pp. 2361-2370
-
-
Hong, H.1
Yang, K.2
Zhang, Y.3
Engle, J.W.4
Feng, L.5
Yang, Y.6
Nayak, T.R.7
Goel, S.8
Bean, J.9
Theuer, C.P.10
-
37
-
-
80055022730
-
Graphene oxide: a nonspecific enhancer of cellular growth.
-
Ruiz ON, Fernando KA, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 2011, 5:8100-8107.
-
(2011)
ACS Nano
, vol.5
, pp. 8100-8107
-
-
Ruiz, O.N.1
Fernando, K.A.2
Wang, B.3
Brown, N.A.4
Luo, P.G.5
McNamara, N.D.6
Vangsness, M.7
Sun, Y.P.8
Bunker, C.E.9
-
38
-
-
84860118035
-
Graphene interfaced with biological cells: opportunities and challenges.
-
Nguyen P, Berry V. Graphene interfaced with biological cells: opportunities and challenges. J Phys Chem Lett 2012, 3:1024-1029.
-
(2012)
J Phys Chem Lett
, vol.3
, pp. 1024-1029
-
-
Nguyen, P.1
Berry, V.2
-
39
-
-
84855833077
-
Biological interactions of graphene-family nanomaterials: an interdisciplinary review.
-
Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 2012, 25: 15-34.
-
(2012)
Chem Res Toxicol
, vol.25
, pp. 15-34
-
-
Sanchez, V.C.1
Jachak, A.2
Hurt, R.H.3
Kane, A.B.4
-
40
-
-
79954657367
-
Graphene and graphene oxide: biofunctionalization and applications in biotechnology.
-
Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 2011, 29: 205-212.
-
(2011)
Trends Biotechnol
, vol.29
, pp. 205-212
-
-
Wang, Y.1
Li, Z.2
Wang, J.3
Li, J.4
Lin, Y.5
-
41
-
-
83055161395
-
Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation.
-
D'Souza F, Das SK, Zandler ME, Sandanayaka ASD, Ito O. Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation. J Am Chem Soc 2011, 133:19922-19930.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 19922-19930
-
-
D'Souza, F.1
Das, S.K.2
Zandler, M.E.3
Sandanayaka, A.S.D.4
Ito, O.5
-
42
-
-
84856267910
-
Carbon nanotube nanoweb-bioelectrode for highly selective dopamine sensing.
-
Zhao J, Zhang W, Sherrell P, Razal JM, Huang X, Minett AI, Chen J. Carbon nanotube nanoweb-bioelectrode for highly selective dopamine sensing. ACS Appl Mater Interfaces 2012, 4:44-48.
-
(2012)
ACS Appl Mater Interfaces
, vol.4
, pp. 44-48
-
-
Zhao, J.1
Zhang, W.2
Sherrell, P.3
Razal, J.M.4
Huang, X.5
Minett, A.I.6
Chen, J.7
-
43
-
-
83655190972
-
Carbon nanotube wiring: a tool for straightforward electrochemical biosensing at magnetic particles.
-
Baldrich E, Muñoz FX. Carbon nanotube wiring: a tool for straightforward electrochemical biosensing at magnetic particles. Anal Chem 2011, 83:9244-9250.
-
(2011)
Anal Chem
, vol.83
, pp. 9244-9250
-
-
Baldrich, E.1
Muñoz, F.X.2
-
44
-
-
85020468049
-
-
Carbon Nanotubes in Regenerative Medicine. In, eds. Berlin, Heidelberg: Springer;, Available at: (Accessed August 18, 2012).
-
Paratala BS, Sitharaman B. Carbon Nanotubes in Regenerative Medicine. In: Klingeler R, Sim RB, eds. Carbon Nanotubes for Biomedical Applications. Berlin, Heidelberg: Springer; 2011, 27-39. Available at: http://www.springerlink.com/index/10.1007/978-3-642-14802-6_2 (Accessed August 18, 2012).
-
(2011)
Carbon Nanotubes for Biomedical Applications.
, pp. 27-39
-
-
Paratala, B.S.1
Sitharaman, B.2
Klingeler, R.3
Sim, R.B.4
-
45
-
-
34447280397
-
Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering.
-
Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, Wilson LJ, Mikos AG. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 2007, 28:4078-4090.
-
(2007)
Biomaterials
, vol.28
, pp. 4078-4090
-
-
Shi, X.1
Sitharaman, B.2
Pham, Q.P.3
Liang, F.4
Wu, K.5
Edward Billups, W.6
Wilson, L.J.7
Mikos, A.G.8
-
46
-
-
55049126534
-
Carbon nanotube micro-electrodes for neuronal interfacing.
-
Ben-Jacob E, Hanein Y. Carbon nanotube micro-electrodes for neuronal interfacing. J Mater Chem 2008, 18:5181.
-
(2008)
J Mater Chem
, vol.18
, pp. 5181
-
-
Ben-Jacob, E.1
Hanein, Y.2
-
47
-
-
63649083293
-
Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors.
-
Martiínez MT, Tseng Y, Ormategui N, Loinaz I, Eritja R, Bokor J. Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett 2009, 9:530-536.
-
(2009)
Nano Lett
, vol.9
, pp. 530-536
-
-
Martiínez, M.T.1
Tseng, Y.2
Ormategui, N.3
Loinaz, I.4
Eritja, R.5
Bokor, J.6
-
48
-
-
81255151131
-
Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine.
-
Chen J-L, Yan X-P, Meng K, Wang S-F. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Anal Chem 2011, 83:8787-8793.
-
(2011)
Anal Chem
, vol.83
, pp. 8787-8793
-
-
Chen, J.-L.1
Yan, X.-P.2
Meng, K.3
Wang, S.-F.4
-
49
-
-
81255171994
-
Detection of biomolecules via benign surface modification of graphene.
-
Kasry A, Afzali AA, Oida S, Han S, Menges B, Tulevski GS. Detection of biomolecules via benign surface modification of graphene. Chem Mater 2011, 23:4879-4881.
-
(2011)
Chem Mater
, vol.23
, pp. 4879-4881
-
-
Kasry, A.1
Afzali, A.A.2
Oida, S.3
Han, S.4
Menges, B.5
Tulevski, G.S.6
-
50
-
-
80053603889
-
Fabrication of free-standing graphene composite films as electrochemical biosensors.
-
Liu F, Piao Y, Choi KS, Seo TS. Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon 2012, 50:123-133.
-
(2012)
Carbon
, vol.50
, pp. 123-133
-
-
Liu, F.1
Piao, Y.2
Choi, K.S.3
Seo, T.S.4
-
51
-
-
84863979880
-
Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance.
-
Gholizadeh A, Shahrokhian S, Iraji zad A, Mohajerzadeh S, Vosoughi M, Darbari S, Koohsorkhi J, Mehran M. Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance. Anal Chem 2012, 84:5932-5938.
-
(2012)
Anal Chem
, vol.84
, pp. 5932-5938
-
-
Gholizadeh, A.1
Shahrokhian, S.2
Iraji zad, A.3
Mohajerzadeh, S.4
Vosoughi, M.5
Darbari, S.6
Koohsorkhi, J.7
Mehran, M.8
-
52
-
-
77953295630
-
Graphene based electrochemical sensors and biosensors: a review.
-
Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 2010, 22:1027-1036.
-
(2010)
Electroanalysis
, vol.22
, pp. 1027-1036
-
-
Shao, Y.1
Wang, J.2
Wu, H.3
Liu, J.4
Aksay, I.A.5
Lin, Y.6
-
53
-
-
84862872330
-
Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers.
-
Lerner MB, D'Souza J, Pazina T, Dailey J, Goldsmith BR, Robinson MK, Johnson AT. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano 2012, 6:5143-5149.
-
(2012)
ACS Nano
, vol.6
, pp. 5143-5149
-
-
Lerner, M.B.1
D'Souza, J.2
Pazina, T.3
Dailey, J.4
Goldsmith, B.R.5
Robinson, M.K.6
Johnson, A.T.7
-
54
-
-
84866120114
-
Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor.
-
Wu J, Yin L. Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl Mater Interfaces 2011, 3:4354-4362.
-
(2011)
ACS Appl Mater Interfaces
, vol.3
, pp. 4354-4362
-
-
Wu, J.1
Yin, L.2
-
55
-
-
84862892399
-
Self-assembled electrical biodetector based on reduced graphene oxide.
-
Kurkina T, Sundaram S, Sundaram RS, Re F, Masserini M, Kern K, Balasubramanian K. Self-assembled electrical biodetector based on reduced graphene oxide. ACS Nano 2012, 6:5514-5520.
-
(2012)
ACS Nano
, vol.6
, pp. 5514-5520
-
-
Kurkina, T.1
Sundaram, S.2
Sundaram, R.S.3
Re, F.4
Masserini, M.5
Kern, K.6
Balasubramanian, K.7
-
56
-
-
84555163703
-
Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung.
-
Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, Chung CH, George S, Zhang H, Wang M, et al. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 2011, 5:9772-9787.
-
(2011)
ACS Nano
, vol.5
, pp. 9772-9787
-
-
Wang, X.1
Xia, T.2
Ntim, S.A.3
Ji, Z.4
Lin, S.5
Meng, H.6
Chung, C.H.7
George, S.8
Zhang, H.9
Wang, M.10
-
58
-
-
33646461402
-
Who should be given the credit for the discovery of carbon nanotubes?
-
Monthioux M, Kuznetsov VL. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006, 44:1621-1623.
-
(2006)
Carbon
, vol.44
, pp. 1621-1623
-
-
Monthioux, M.1
Kuznetsov, V.L.2
-
59
-
-
0007521799
-
O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate).
-
Radushkevich LV, Luk'yanovich VM. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate). Zh Fiz Khim 1952, 26:88-95.
-
(1952)
Zh Fiz Khim
, vol.26
, pp. 88-95
-
-
Radushkevich, L.V.1
Luk'yanovich, V.M.2
-
60
-
-
84943133091
-
The structure of graphite filaments.
-
Hillert M, Lange N. The structure of graphite filaments. Z Kristallogr 1959, 111:24-34.
-
(1959)
Z Kristallogr
, vol.111
, pp. 24-34
-
-
Hillert, M.1
Lange, N.2
-
61
-
-
0015744116
-
Carbon from carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms.
-
Boehm HP. Carbon from carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms. Carbon 1973, 11:583-590.
-
(1973)
Carbon
, vol.11
, pp. 583-590
-
-
Boehm, H.P.1
-
62
-
-
49549165973
-
Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene.
-
Baker R. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal 1973, 30:86-95.
-
(1973)
J Catal
, vol.30
, pp. 86-95
-
-
Baker, R.1
-
64
-
-
84891576749
-
-
Wiley InterScience (Online Service). Weinheim, Germany: Wiley-VCH Verlag; Available at: (Accessed August 31, 2012).
-
Li S; Wiley InterScience (Online Service). Biosensor Nanomaterials. Weinheim, Germany: Wiley-VCH Verlag; 2011. Available at: http://www.myilibrary.com?id=337055 (Accessed August 31, 2012).
-
(2011)
Biosensor Nanomaterials.
-
-
Li, S.1
-
65
-
-
84863050083
-
Chemistry of carbon nanotubes for everyone.
-
Basu-Dutt S, Minus ML, Jain R, Nepal D, Kumar S. Chemistry of carbon nanotubes for everyone. J Chem Educ 2012, 89:221-229.
-
(2012)
J Chem Educ
, vol.89
, pp. 221-229
-
-
Basu-Dutt, S.1
Minus, M.L.2
Jain, R.3
Nepal, D.4
Kumar, S.5
-
66
-
-
84865146285
-
A simple road for the transformation of few-layer graphene into MWNTs.
-
doi:10.1021/ja303131j
-
Quintana M, Grzelczak M, Spyrou K, Calvaresi M, Bals S, Kooi B, Van Tendeloo G, Rudolf P, Zerbetto F, Prato M. A simple road for the transformation of few-layer graphene into MWNTs. J Am Chem Soc 2012, 134:13310-13315. doi:10.1021/ja303131j.
-
(2012)
J Am Chem Soc
, vol.134
, pp. 13310-13315
-
-
Quintana, M.1
Grzelczak, M.2
Spyrou, K.3
Calvaresi, M.4
Bals, S.5
Kooi, B.6
Van Tendeloo, G.7
Rudolf, P.8
Zerbetto, F.9
Prato, M.10
-
67
-
-
0030679125
-
The first observation of carbon nanotubes.
-
Boehm HP. The first observation of carbon nanotubes. Carbon 1997, 35:581-584.
-
(1997)
Carbon
, vol.35
, pp. 581-584
-
-
Boehm, H.P.1
-
68
-
-
21644474768
-
Carbon nanotube substrates boost neuronal electrical signaling.
-
Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 2005, 5:1107-1110.
-
(2005)
Nano Lett
, vol.5
, pp. 1107-1110
-
-
Lovat, V.1
Pantarotto, D.2
Lagostena, L.3
Cacciari, B.4
Grandolfo, M.5
Righi, M.6
Spalluto, G.7
Prato, M.8
Ballerini, L.9
-
69
-
-
33749660040
-
Neural stimulation with a carbon nanotube microelectrode array.
-
Wang K, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett 2006, 6:2043-2048.
-
(2006)
Nano Lett
, vol.6
, pp. 2043-2048
-
-
Wang, K.1
Fishman, H.A.2
Dai, H.3
Harris, J.S.4
-
70
-
-
46749136816
-
Carbon nanotube coating improves neuronal recordings.
-
Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 2008, 3:434-439.
-
(2008)
Nat Nanotechnol
, vol.3
, pp. 434-439
-
-
Keefer, E.W.1
Botterman, B.R.2
Romero, M.I.3
Rossi, A.F.4
Gross, G.W.5
-
71
-
-
51649116569
-
Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films.
-
Kobashi K, Villmow T, Andres T, Pötschke P. Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sens Actuators B Chem 2008, 134:787-795.
-
(2008)
Sens Actuators B Chem
, vol.134
, pp. 787-795
-
-
Kobashi, K.1
Villmow, T.2
Andres, T.3
Pötschke, P.4
-
72
-
-
80052691187
-
Chemical vapour sensing behaviors of multi-walled carbon nanotube adsorbed electrospun nylon 6,6 nanofibers.
-
Choi J, Park DW, Shim SE. Chemical vapour sensing behaviors of multi-walled carbon nanotube adsorbed electrospun nylon 6, 6 nanofibers. Macromol Res 2011, 19:980-983.
-
(2011)
Macromol Res
, vol.19
, pp. 980-983
-
-
Choi, J.1
Park, D.W.2
Shim, S.E.3
-
74
-
-
79954619019
-
Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources.
-
Abrahamson JT, Choi W, Schonenbach NS, Park J, Han J, Walsh MP, Kalantar-zadeh K, Strano MS. Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources. ACS Nano 2011, 5:367-375.
-
(2011)
ACS Nano
, vol.5
, pp. 367-375
-
-
Abrahamson, J.T.1
Choi, W.2
Schonenbach, N.S.3
Park, J.4
Han, J.5
Walsh, M.P.6
Kalantar-zadeh, K.7
Strano, M.S.8
-
75
-
-
11444268193
-
Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst.
-
Sato S, Kawabata A, Kondo D, Nihei M, Awano Y. Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst. Chem Phys Lett 2005, 402:149-154.
-
(2005)
Chem Phys Lett
, vol.402
, pp. 149-154
-
-
Sato, S.1
Kawabata, A.2
Kondo, D.3
Nihei, M.4
Awano, Y.5
-
76
-
-
47249105511
-
Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation.
-
Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology 2008, 19:295101.
-
(2008)
Nanotechnology
, vol.19
, pp. 295101
-
-
Sirivisoot, S.1
Webster, T.J.2
-
78
-
-
35349030396
-
Multiwall carbon nanotube scaffolds for tissue engineering purposes.
-
Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, del Monte F. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 2008, 29:94-102.
-
(2008)
Biomaterials
, vol.29
, pp. 94-102
-
-
Abarrategi, A.1
Gutiérrez, M.C.2
Moreno-Vicente, C.3
Hortigüela, M.J.4
Ramos, V.5
López-Lacomba, J.L.6
Ferrer, M.L.7
del Monte, F.8
-
79
-
-
34548700171
-
Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications.
-
Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 2007, 18:365102.
-
(2007)
Nanotechnology
, vol.18
, pp. 365102
-
-
Sirivisoot, S.1
Yao, C.2
Xiao, X.3
Sheldon, B.W.4
Webster, T.J.5
-
80
-
-
0038033665
-
Single-shell carbon nanotubes of 1-nm diameter.
-
Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363:603-605.
-
(1993)
Nature
, vol.363
, pp. 603-605
-
-
Iijima, S.1
Ichihashi, T.2
-
81
-
-
0342705993
-
Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls.
-
Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363:605-607.
-
(1993)
Nature
, vol.363
, pp. 605-607
-
-
Bethune, D.S.1
Kiang, C.H.2
de Vries, M.S.3
Gorman, G.4
Savoy, R.5
Vazquez, J.6
Beyers, R.7
-
82
-
-
31544453347
-
Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes.
-
Heller DA, Jeng ES, Yeung T, Martinez BM, Moll AE, Gastala JB, Strano MS. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006, 311:508-511.
-
(2006)
Science
, vol.311
, pp. 508-511
-
-
Heller, D.A.1
Jeng, E.S.2
Yeung, T.3
Martinez, B.M.4
Moll, A.E.5
Gastala, J.B.6
Strano, M.S.7
-
83
-
-
59849088468
-
Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes.
-
Heller DA, Jin H, Martinez BM, Patel D, Miller BM, Yeung TK, Jena PV, Höbartner C, Ha T, Silverman SK, et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 2008, 4:114-120.
-
(2008)
Nat Nanotechnol
, vol.4
, pp. 114-120
-
-
Heller, D.A.1
Jin, H.2
Martinez, B.M.3
Patel, D.4
Miller, B.M.5
Yeung, T.K.6
Jena, P.V.7
Höbartner, C.8
Ha, T.9
Silverman, S.K.10
-
84
-
-
46049114290
-
Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization.
-
Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan W. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 2008, 130:8351-8358.
-
(2008)
J Am Chem Soc
, vol.130
, pp. 8351-8358
-
-
Yang, R.1
Jin, J.2
Chen, Y.3
Shao, N.4
Kang, H.5
Xiao, Z.6
Tang, Z.7
Wu, Y.8
Zhu, Z.9
Tan, W.10
-
85
-
-
33845746385
-
Reversible control of carbon nanotube aggregation for a glucose affinity sensor.
-
Barone PW, Strano MS. Reversible control of carbon nanotube aggregation for a glucose affinity sensor. Angew Chem Int Ed 2006, 45:8138-8141.
-
(2006)
Angew Chem Int Ed
, vol.45
, pp. 8138-8141
-
-
Barone, P.W.1
Strano, M.S.2
-
86
-
-
56449124932
-
Sequential delivery of dexamethasone and VEGF to control local tissue response for carbon nanotube fluorescence based micro-capillary implantable sensors.
-
Sung J, Barone PW, Kong H, Strano MS. Sequential delivery of dexamethasone and VEGF to control local tissue response for carbon nanotube fluorescence based micro-capillary implantable sensors. Biomaterials 2009, 30:622-631.
-
(2009)
Biomaterials
, vol.30
, pp. 622-631
-
-
Sung, J.1
Barone, P.W.2
Kong, H.3
Strano, M.S.4
-
87
-
-
0001527526
-
Raman intensity of single-wall carbon nanotubes.
-
Saito R, Takeya T, Kimura T, Dresselhaus G, Dresselhaus M. Raman intensity of single-wall carbon nanotubes. Phys Rev B 1998, 57:4145-4153.
-
(1998)
Phys Rev B
, vol.57
, pp. 4145-4153
-
-
Saito, R.1
Takeya, T.2
Kimura, T.3
Dresselhaus, G.4
Dresselhaus, M.5
-
88
-
-
0036040963
-
Raman spectroscopy on isolated single wall carbon nanotubes.
-
Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40:2043-2061.
-
(2002)
Carbon
, vol.40
, pp. 2043-2061
-
-
Dresselhaus, M.S.1
Dresselhaus, G.2
Jorio, A.3
Souza Filho, A.G.4
Saito, R.5
-
89
-
-
29044450581
-
Substrate-induced Raman frequency variation for single-walled carbon nanotubes.
-
Zhang Y, Zhang J, Son H, Kong J, Liu Z. Substrate-induced Raman frequency variation for single-walled carbon nanotubes. J Am Chem Soc 2005, 127: 17156-17157.
-
(2005)
J Am Chem Soc
, vol.127
, pp. 17156-17157
-
-
Zhang, Y.1
Zhang, J.2
Son, H.3
Kong, J.4
Liu, Z.5
-
90
-
-
14644407524
-
Raman spectroscopy of carbon nanotubes.
-
Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes. Phys Rep 2005, 409:47-99.
-
(2005)
Phys Rep
, vol.409
, pp. 47-99
-
-
Dresselhaus, M.S.1
Dresselhaus, G.2
Saito, R.3
Jorio, A.4
-
91
-
-
40349112868
-
Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy.
-
Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 2008, 105:1410-1415.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 1410-1415
-
-
Liu, Z.1
Davis, C.2
Cai, W.3
He, L.4
Chen, X.5
Dai, H.6
-
92
-
-
33846845060
-
In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.
-
Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2006, 2:47-52.
-
(2006)
Nat Nanotechnol
, vol.2
, pp. 47-52
-
-
Liu, Z.1
Cai, W.2
He, L.3
Nakayama, N.4
Chen, K.5
Sun, X.6
Chen, X.7
Dai, H.8
-
93
-
-
54549116271
-
Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes.
-
Zavaleta C, de la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, Chen X, Dai H, Gambhir SS. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett 2008, 8:2800-2805.
-
(2008)
Nano Lett
, vol.8
, pp. 2800-2805
-
-
Zavaleta, C.1
de la Zerda, A.2
Liu, Z.3
Keren, S.4
Cheng, Z.5
Schipper, M.6
Chen, X.7
Dai, H.8
Gambhir, S.S.9
-
94
-
-
84861838801
-
Protamine functionalized single-walled carbon nanotubes for stem cell labeling and in vivo Raman/magnetic resonance/photoacoustic triple-modal imaging.
-
Wang C, Ma X, Ye S, Cheng L, Yang K, Guo L, Li C, Li Y, Liu Z. Protamine functionalized single-walled carbon nanotubes for stem cell labeling and in vivo Raman/magnetic resonance/photoacoustic triple-modal imaging. Adv Funct Mater 2012, 22: 2363-2375.
-
(2012)
Adv Funct Mater
, vol.22
, pp. 2363-2375
-
-
Wang, C.1
Ma, X.2
Ye, S.3
Cheng, L.4
Yang, K.5
Guo, L.6
Li, C.7
Li, Y.8
Liu, Z.9
-
95
-
-
78349304285
-
Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors.
-
Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 2011, 32:144-151.
-
(2011)
Biomaterials
, vol.32
, pp. 144-151
-
-
Liu, X.1
Tao, H.2
Yang, K.3
Zhang, S.4
Lee, S.T.5
Liu, Z.6
-
96
-
-
84858978659
-
Design and fabrication of single-walled carbon nanonet flexible strain sensors.
-
Huang Y-T, Huang S-C, Hsu C-C, Chao R-M, Vu TK. Design and fabrication of single-walled carbon nanonet flexible strain sensors. Sensors 2012, 12: 3269-3280.
-
(2012)
Sensors
, vol.12
, pp. 3269-3280
-
-
Huang, Y.-T.1
Huang, S.-C.2
Hsu, C.-C.3
Chao, R.-M.4
Vu, T.K.5
-
97
-
-
11144314296
-
Near-infrared optical sensors based on single-walled carbon nanotubes.
-
Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 2004, 4:86-92.
-
(2004)
Nat Mater
, vol.4
, pp. 86-92
-
-
Barone, P.W.1
Baik, S.2
Heller, D.A.3
Strano, M.S.4
-
98
-
-
77955479960
-
Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.
-
Claussen JC, Kim SS, Haque AU, Artiles MS, Porterfield DM, Fisher TS. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes. J Diabetes Sci Technol 2010, 4:312-319.
-
(2010)
J Diabetes Sci Technol
, vol.4
, pp. 312-319
-
-
Claussen, J.C.1
Kim, S.S.2
Haque, A.U.3
Artiles, M.S.4
Porterfield, D.M.5
Fisher, T.S.6
-
99
-
-
33746454802
-
Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface.
-
Liopo AV, Stewart MP, Hudson J, Tour JM, Pappas TC. Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J Nanosci Nanotechnol 2006, 6:1365-1374.
-
(2006)
J Nanosci Nanotechnol
, vol.6
, pp. 1365-1374
-
-
Liopo, A.V.1
Stewart, M.P.2
Hudson, J.3
Tour, J.M.4
Pappas, T.C.5
-
100
-
-
34347342848
-
Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits.
-
Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 2007, 27:6931-6936.
-
(2007)
J Neurosci
, vol.27
, pp. 6931-6936
-
-
Mazzatenta, A.1
Giugliano, M.2
Campidelli, S.3
Gambazzi, L.4
Businaro, L.5
Markram, H.6
Prato, M.7
Ballerini, L.8
-
101
-
-
34447520531
-
Electrical properties and applications of carbon nanotube structures.
-
Bandaru PR. Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 2007, 7:1239-1267.
-
(2007)
J Nanosci Nanotechnol
, vol.7
, pp. 1239-1267
-
-
Bandaru, P.R.1
-
102
-
-
84857276468
-
Wetting transparency of graphene.
-
Rafiee J, Mi X, Gullapalli H, Thomas AV, Yavari F, Shi Y, Ajayan PM, Koratkar NA. Wetting transparency of graphene. Nat Mater 2012, 11:217-222.
-
(2012)
Nat Mater
, vol.11
, pp. 217-222
-
-
Rafiee, J.1
Mi, X.2
Gullapalli, H.3
Thomas, A.V.4
Yavari, F.5
Shi, Y.6
Ajayan, P.M.7
Koratkar, N.A.8
-
103
-
-
84868021547
-
Breakdown in the wetting transparency of graphene.
-
Shih C-J, Wang QH, Lin S, Park K, Jin Z, Strano MS, Blankschtein D. Breakdown in the wetting transparency of graphene. Phys Rev Lett 2012, 109: 6101-6105.
-
(2012)
Phys Rev Lett
, vol.109
, pp. 6101-6105
-
-
Shih, C.-J.1
Wang, Q.H.2
Lin, S.3
Park, K.4
Jin, Z.5
Strano, M.S.6
Blankschtein, D.7
-
104
-
-
79959788241
-
Graphene-based materials: synthesis, characterization, properties, and applications.
-
Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Graphene-based materials: synthesis, characterization, properties, and applications. Small 2011, 7:1876-1902.
-
(2011)
Small
, vol.7
, pp. 1876-1902
-
-
Huang, X.1
Yin, Z.2
Wu, S.3
Qi, X.4
He, Q.5
Zhang, Q.6
Yan, Q.7
Boey, F.8
Zhang, H.9
-
105
-
-
77956963862
-
Graphene and graphene oxide: synthesis, properties, and applications.
-
Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 2010, 22:3906-3924.
-
(2010)
Adv Mater
, vol.22
, pp. 3906-3924
-
-
Zhu, Y.1
Murali, S.2
Cai, W.3
Li, X.4
Suk, J.W.5
Potts, J.R.6
Ruoff, R.S.7
-
106
-
-
82955183645
-
Graphene chemistry: synthesis and manipulation.
-
Sun Z, James DK, Tour JM. Graphene chemistry: synthesis and manipulation. J Phys Chem Lett 2011, 2:2425-2432.
-
(2011)
J Phys Chem Lett
, vol.2
, pp. 2425-2432
-
-
Sun, Z.1
James, D.K.2
Tour, J.M.3
-
107
-
-
77949880674
-
The chemistry of graphene oxide.
-
Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2010, 39:228.
-
(2010)
Chem Soc Rev
, vol.39
, pp. 228
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
Ruoff, R.S.4
-
108
-
-
80052040584
-
DNA as a linker for biocatalytic deposition of Au nanoparticles on graphene and its application in glucose detection.
-
Zheng J, He Y, Sheng Q, Zhang H. DNA as a linker for biocatalytic deposition of Au nanoparticles on graphene and its application in glucose detection. J Mater Chem 2011, 21:12873.
-
(2011)
J Mater Chem
, vol.21
, pp. 12873
-
-
Zheng, J.1
He, Y.2
Sheng, Q.3
Zhang, H.4
-
109
-
-
70350394842
-
Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing.
-
Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 2009, 25:901-905.
-
(2009)
Biosens Bioelectron
, vol.25
, pp. 901-905
-
-
Kang, X.1
Wang, J.2
Wu, H.3
Aksay, I.A.4
Liu, J.5
Lin, Y.6
-
110
-
-
78349311450
-
The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes.
-
Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee YH, Suh M. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 2011, 32:19-27.
-
(2011)
Biomaterials
, vol.32
, pp. 19-27
-
-
Heo, C.1
Yoo, J.2
Lee, S.3
Jo, A.4
Jung, S.5
Yoo, H.6
Lee, Y.H.7
Suh, M.8
-
111
-
-
80052126368
-
-
Beijing, China: IEEE
-
Chen CH, Chen JJ, Hsu WL, Chang YC, Yeh SR, Li LJ, Yao DJ. A Graphene-Based Microelectrode for Recording Neural Signals. Beijing, China: IEEE; 2011, 1883-1886.
-
(2011)
A Graphene-Based Microelectrode for Recording Neural Signals.
, pp. 1883-1886
-
-
Chen, C.H.1
Chen, J.J.2
Hsu, W.L.3
Chang, Y.C.4
Yeh, S.R.5
Li, L.J.6
Yao, D.J.7
-
112
-
-
79960712878
-
A sensitive label-free amperometric CEA immunosensor based on graphene-nafion nanocomposite film as an enhanced sensing platform.
-
Li Y, Yang W-K, Fan M-Q, Liu A. A sensitive label-free amperometric CEA immunosensor based on graphene-nafion nanocomposite film as an enhanced sensing platform. Anal Sci 2011, 27:727.
-
(2011)
Anal Sci
, vol.27
, pp. 727
-
-
Li, Y.1
Yang, W.-K.2
Fan, M.-Q.3
Liu, A.4
-
113
-
-
84856433235
-
Chemical sensors based on randomly stacked graphene flakes.
-
Salehi-Khojin A, Estrada D, Lin KY, Ran K, Haasch RT, Zuo J-M, Pop E, Masel RI. Chemical sensors based on randomly stacked graphene flakes. Appl Phys Lett 2012, 100:033111.
-
(2012)
Appl Phys Lett
, vol.100
, pp. 033111
-
-
Salehi-Khojin, A.1
Estrada, D.2
Lin, K.Y.3
Ran, K.4
Haasch, R.T.5
Zuo, J.-M.6
Pop, E.7
Masel, R.I.8
-
114
-
-
84856201514
-
Electronic detection of lectins using carbohydrate-functionalized nanostructures: graphene versus carbon nanotubes.
-
Chen Y, Vedala H, Kotchey GP, Audfray A, Cecioni S, Imberty A, Vidal S, Star A. Electronic detection of lectins using carbohydrate-functionalized nanostructures: graphene versus carbon nanotubes. ACS Nano 2012, 6:760-770.
-
(2012)
ACS Nano
, vol.6
, pp. 760-770
-
-
Chen, Y.1
Vedala, H.2
Kotchey, G.P.3
Audfray, A.4
Cecioni, S.5
Imberty, A.6
Vidal, S.7
Star, A.8
-
115
-
-
84855384200
-
facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates.
-
Chen Q, Zhang L, Chen G. facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Anal Chem 2012, 84:171-178.
-
(2012)
Anal Chem
, vol.84
, pp. 171-178
-
-
Chen, Q.1
Zhang, L.2
Chen, G.3
-
116
-
-
84862551518
-
Graphene: a versatile nanoplatform for biomedical applications.
-
Zhang Y, Nayak TR, Hong H, Cai W. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 2012, 4:3833.
-
(2012)
Nanoscale
, vol.4
, pp. 3833
-
-
Zhang, Y.1
Nayak, T.R.2
Hong, H.3
Cai, W.4
-
117
-
-
84856181540
-
Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake.
-
Hong BJ, Compton OC, An Z, Eryazici I, Nguyen ST. Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake. ACS Nano 2012, 6:63-73.
-
(2012)
ACS Nano
, vol.6
, pp. 63-73
-
-
Hong, B.J.1
Compton, O.C.2
An, Z.3
Eryazici, I.4
Nguyen, S.T.5
-
118
-
-
35348861259
-
One at a time, live tracking of NGF axonal transport using quantum dots.
-
Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu S. One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci U S A 2007, 104:13666-13671.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 13666-13671
-
-
Cui, B.1
Wu, C.2
Chen, L.3
Ramirez, A.4
Bearer, E.L.5
Li, W.P.6
Mobley, W.C.7
Chu, S.8
-
119
-
-
84863821548
-
Graphene oxide and lipid membranes: interactions and nanocomposite structures.
-
Frost R, Jönsson GE, Chakarov D, Svedhem S, Kasemo B. Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett 2012, 12:3356-3362.
-
(2012)
Nano Lett
, vol.12
, pp. 3356-3362
-
-
Frost, R.1
Jönsson, G.E.2
Chakarov, D.3
Svedhem, S.4
Kasemo, B.5
-
120
-
-
84863471594
-
Optical turn-on sensor based on graphene oxide for selective detection of d-glucosamine.
-
Cheng R, Liu Y, Ou S, Pan Y, Zhang S, Chen H, Dai L, Qu J. Optical turn-on sensor based on graphene oxide for selective detection of d-glucosamine. Anal Chem 2012, 84:5641-5644.
-
(2012)
Anal Chem
, vol.84
, pp. 5641-5644
-
-
Cheng, R.1
Liu, Y.2
Ou, S.3
Pan, Y.4
Zhang, S.5
Chen, H.6
Dai, L.7
Qu, J.8
-
121
-
-
84863337692
-
An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection.
-
Haque A-MJ, Park H, Sung D, Jon S, Choi SY, Kim K. An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal Chem 2012, 84:1871-1878.
-
(2012)
Anal Chem
, vol.84
, pp. 1871-1878
-
-
Haque, A.-M.1
Park, H.2
Sung, D.3
Jon, S.4
Choi, S.Y.5
Kim, K.6
-
122
-
-
82555170558
-
A new assay for endonuclease/methyltransferase activities based on graphene oxide.
-
Lee J, Kim Y-K, Min D-H. A new assay for endonuclease/methyltransferase activities based on graphene oxide. Anal Chem 2011, 83:8906-8912.
-
(2011)
Anal Chem
, vol.83
, pp. 8906-8912
-
-
Lee, J.1
Kim, Y.-K.2
Min, D.-H.3
-
123
-
-
80455167966
-
Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin.
-
De M, Chou SS, Dravid VP. Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin. J Am Chem Soc 2011, 133: 17524-17527.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 17524-17527
-
-
De, M.1
Chou, S.S.2
Dravid, V.P.3
-
124
-
-
84862852658
-
Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability.
-
Jin L, Yang K, Yao K, Zhang S, Tao H, Lee ST, Liu Z, Peng R. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano 2012, 6:4864-4875.
-
(2012)
ACS Nano
, vol.6
, pp. 4864-4875
-
-
Jin, L.1
Yang, K.2
Yao, K.3
Zhang, S.4
Tao, H.5
Lee, S.T.6
Liu, Z.7
Peng, R.8
-
125
-
-
84863947347
-
Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins.
-
Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 2012, 84:6263-6270.
-
(2012)
Anal Chem
, vol.84
, pp. 6263-6270
-
-
Wu, S.1
Duan, N.2
Ma, X.3
Xia, Y.4
Wang, H.5
Wang, Z.6
Zhang, Q.7
-
126
-
-
79951915931
-
Preparation, characterization and antibacterial properties of silver-modified graphene oxide.
-
Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 2011, 21:3350.
-
(2011)
J Mater Chem
, vol.21
, pp. 3350
-
-
Ma, J.1
Zhang, J.2
Xiong, Z.3
Yong, Y.4
Zhao, X.S.5
-
127
-
-
84872008199
-
Superhydrophobic graphene foams.
-
doi:10.1002/smll.201201176
-
Singh E, Chen Z, Houshmand F, Ren W, Peles Y, Cheng HM, Koratkar N. Superhydrophobic graphene foams. Small 2013, 9:75-80. doi:10.1002/smll.201201176.
-
(2013)
Small
, vol.9
, pp. 75-80
-
-
Singh, E.1
Chen, Z.2
Houshmand, F.3
Ren, W.4
Peles, Y.5
Cheng, H.M.6
Koratkar, N.7
-
128
-
-
84555190981
-
Two-dimensional coalescence dynamics of encapsulated metallofullerenes in carbon nanotubes.
-
Allen CS, Ito Y, Robertson AW, Shinohara H, Warner JH. Two-dimensional coalescence dynamics of encapsulated metallofullerenes in carbon nanotubes. ACS Nano 2011, 5:10084-10089.
-
(2011)
ACS Nano
, vol.5
, pp. 10084-10089
-
-
Allen, C.S.1
Ito, Y.2
Robertson, A.W.3
Shinohara, H.4
Warner, J.H.5
-
129
-
-
83655172566
-
A molecular switch based on current-driven rotation of an encapsulated cluster within a fullerene cage.
-
Huang T, Zhao J, Feng M, Popov AA, Yang S, Dunsch L, Petek H. A molecular switch based on current-driven rotation of an encapsulated cluster within a fullerene cage. Nano Lett 2011, 11: 5327-5332.
-
(2011)
Nano Lett
, vol.11
, pp. 5327-5332
-
-
Huang, T.1
Zhao, J.2
Feng, M.3
Popov, A.A.4
Yang, S.5
Dunsch, L.6
Petek, H.7
-
130
-
-
0034118229
-
Donor-acceptor complexes of fullerene C60 with organic and organometallic donors.
-
Konarev DV, Lyubovskaya RN, Drichko NV, Yudanova EI, Shul'ga YM, Litvinov AL, Semkin VN, Tarasov BP. Donor-acceptor complexes of fullerene C60 with organic and organometallic donors. J Mater Chem 2000, 10:803-818.
-
(2000)
J Mater Chem
, vol.10
, pp. 803-818
-
-
Konarev, D.V.1
Lyubovskaya, R.N.2
Drichko, N.V.3
Yudanova, E.I.4
Shul'ga, Y.M.5
Litvinov, A.L.6
Semkin, V.N.7
Tarasov, B.P.8
-
131
-
-
42949083682
-
Gadofullerene MRI contrast agents.
-
Bolskar RD. Gadofullerene MRI contrast agents. Nanomedicine 2008, 3:201-213.
-
(2008)
Nanomedicine
, vol.3
, pp. 201-213
-
-
Bolskar, R.D.1
-
133
-
-
0032135906
-
C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase.
-
Patolsky F, Tao G, Katz E, Willner I. C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase. J Electroanal Chem 1998, 454:9-13.
-
(1998)
J Electroanal Chem
, vol.454
, pp. 9-13
-
-
Patolsky, F.1
Tao, G.2
Katz, E.3
Willner, I.4
-
134
-
-
0031149736
-
Electronic processes in supported bilayer lipid membranes (s-BLMs) containing a geodesic form of carbon (fullerene C60).
-
Ti Tien H, Wang L-G, Wang X, Ottova AL. Electronic processes in supported bilayer lipid membranes (s-BLMs) containing a geodesic form of carbon (fullerene C60). Bioelectrochem Bioenerg 1997, 42:161-167.
-
(1997)
Bioelectrochem Bioenerg
, vol.42
, pp. 161-167
-
-
Ti Tien, H.1
Wang, L.-G.2
Wang, X.3
Ottova, A.L.4
-
135
-
-
46149113117
-
Medicinal applications of fullerenes.
-
Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z. Medicinal applications of fullerenes. Int J Nanomed 2007, 2:639-649.
-
(2007)
Int J Nanomed
, vol.2
, pp. 639-649
-
-
Bakry, R.1
Vallant, R.M.2
Najam-ul-Haq, M.3
Rainer, M.4
Szabo, Z.5
-
136
-
-
21744449445
-
Anti-HIV properties of cationic fullerene derivatives.
-
Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M. Anti-HIV properties of cationic fullerene derivatives. Bioorg Med Chem Lett 2005, 15:3615-3618.
-
(2005)
Bioorg Med Chem Lett
, vol.15
, pp. 3615-3618
-
-
Marchesan, S.1
Da Ros, T.2
Spalluto, G.3
Balzarini, J.4
Prato, M.5
-
137
-
-
80053633118
-
Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts.
-
Liao K-H, Lin Y-S, Macosko CW, Haynes CL. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Applied Materials & Interfaces 2011, 3:2607-2615.
-
(2011)
ACS Applied Materials & Interfaces
, vol.3
, pp. 2607-2615
-
-
Liao, K.-H.1
Lin, Y.-S.2
Macosko, C.W.3
Haynes, C.L.4
|