메뉴 건너뛰기




Volumn 27, Issue 3-4, 2013, Pages 50-62

Sparse models by iteratively reweighted feature scaling: A framework for wavelength and sample selection

Author keywords

Least absolute shrinkage and selection operator (LASSO); Multivariate calibration; Sample selection; Sparsity; Support vector regression (SVR); Tikhonov regularization (TR); Wavelength selection

Indexed keywords

LEAST SQUARES APPROXIMATIONS; NUMERICAL METHODS; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS;

EID: 84876080288     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.2492     Document Type: Article
Times cited : (13)

References (49)
  • 1
    • 78650649260 scopus 로고    scopus 로고
    • Variable selection in regression-a tutorial
    • Anderson CR, Bro R. Variable selection in regression-a tutorial. J.Chemom. 2010; 24(11-12):728-737.
    • (2010) J.Chemom. , vol.24 , Issue.11-12 , pp. 728-737
    • Anderson, C.R.1    Bro, R.2
  • 2
    • 79954634261 scopus 로고    scopus 로고
    • Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data
    • Balabin RM, Sergey SV. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data. Anal. Chim. Acta 2011; 692: 63-72.
    • (2011) Anal. Chim. Acta , vol.692 , pp. 63-72
    • Balabin, R.M.1    Sergey, S.V.2
  • 3
    • 0000364765 scopus 로고
    • Robust modeling of erratic data
    • Claerbout J, Muir F. Robust modeling of erratic data. Geophysics 1973; 38: 826-844.
    • (1973) Geophysics , vol.38 , pp. 826-844
    • Claerbout, J.1    Muir, F.2
  • 5
    • 0019390023 scopus 로고
    • Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution
    • Levy S, Fullagar P. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 1981; 46: 1235-1243.
    • (1981) Geophysics , vol.46 , pp. 1235-1243
    • Levy, S.1    Fullagar, P.2
  • 6
    • 0008988926 scopus 로고
    • Linear inversion of band limited reflection seismograms
    • Santosa F, Symes WW. Linear inversion of band limited reflection seismograms. SIAM J. Sci. Stat. Comp. 1986; 7: 1250-1254.
    • (1986) SIAM J. Sci. Stat. Comp. , vol.7 , pp. 1250-1254
    • Santosa, F.1    Symes, W.W.2
  • 7
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani RJ. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B 1996; 58: 267-288.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.J.1
  • 9
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 2005; 68(1):49-67.
    • (2005) J. R. Stat. Soc. Ser. B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 10
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006; 101(476):1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 12
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: the bridge versus the lasso
    • Fu W. Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat. 1998; 7(3): 397-416.
    • (1998) J. Comput. Graph. Stat. , vol.7 , Issue.3 , pp. 397-416
    • Fu, W.1
  • 15
    • 85153990823 scopus 로고    scopus 로고
    • Sparselab: seeking sparse solutions to linear systems of equations, Standford University [Accessed on February 12, 2013]
    • Sparselab: seeking sparse solutions to linear systems of equations, Standford University. http://sparselab.stanford.edu/ [Accessed on February 12, 2013].
  • 16
    • 85153977295 scopus 로고    scopus 로고
    • SLEP: a sparse learning package, Arizona State University [Accessed on February 12, 2013]
    • Liu J, Ji S, Ye J. SLEP: a sparse learning package, Arizona State University. http://www.public.asu.edu/~jye02/Software/SLEP [Accessed on February 12, 2013].
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 17
    • 85153982840 scopus 로고    scopus 로고
    • Fast optimization methods for L1 regularization: a comparative study and 2 new approaches. Proceedings of 2007 European Conference on Machine Learning: Warsaw, Poland [Accessed on February 12, 2013]
    • Schmidt M, Fung G, Rosales R. Fast optimization methods for L1 regularization: a comparative study and 2 new approaches. Proceedings of 2007 European Conference on Machine Learning: Warsaw, Poland, 2007. http://www.di.ens.fr/~mschmidt [Accessed on February 12, 2013].
    • (2007)
    • Schmidt, M.1    Fung, G.2    Rosales, R.3
  • 18
    • 85153975843 scopus 로고    scopus 로고
    • Multiplicative updates for the lasso. Proceedings of 2007 IEEE International Workshop on Machine Learning for Signal Processing: Thessaloniki, Greece [Accessed on February 12, 2013]
    • Mørup M, Clemmensen L. Multiplicative updates for the lasso. Proceedings of 2007 IEEE International Workshop on Machine Learning for Signal Processing: Thessaloniki, Greece, 2007. http://www.mortenmorup.dk/ [Accessed on February 12, 2013].
    • (2007)
    • Mørup, M.1    Clemmensen, L.2
  • 19
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • Tikhonov A. Solution of incorrectly formulated problems and the regularization method. English translation of Dokl. Akad. Nauk. SSSR 1963; 151: 501-504.
    • (1963) English translation of Dokl. Akad. Nauk. SSSR , vol.151 , pp. 501-504
    • Tikhonov, A.1
  • 20
    • 0002161961 scopus 로고
    • Application of ridge analysis to regression problem
    • Hoerl A. Application of ridge analysis to regression problem. Chem. Eng. Prog. 1962; 58: 54-59.
    • (1962) Chem. Eng. Prog. , vol.58 , pp. 54-59
    • Hoerl, A.1
  • 21
    • 68349114771 scopus 로고    scopus 로고
    • Tikhonov regularization approaches for calibration maintenance and transfer
    • Kalivas JH, Siano GS, Andries E, Goicoechea HC. Tikhonov regularization approaches for calibration maintenance and transfer. Appl. Spectrosc. 2009; 63(7):800-809.
    • (2009) Appl. Spectrosc. , vol.63 , Issue.7 , pp. 800-809
    • Kalivas, J.H.1    Siano, G.S.2    Andries, E.3    Goicoechea, H.C.4
  • 22
    • 77951083710 scopus 로고    scopus 로고
    • Impact of standardization sample design on Tikhonov regularization variants for spectroscopic calibration maintenance and transfer
    • Kunz MR, Ottaway J, Kalivas JH, Andries E. Impact of standardization sample design on Tikhonov regularization variants for spectroscopic calibration maintenance and transfer. J. Chemometr. 2010; 24: 218-229.
    • (2010) J. Chemometr. , vol.24 , pp. 218-229
    • Kunz, M.R.1    Ottaway, J.2    Kalivas, J.H.3    Andries, E.4
  • 23
    • 77951854153 scopus 로고    scopus 로고
    • Model updating for spectral calibration maintenance and transfer using 1-norm variants of Tikhonov regularization
    • Kunz MR, Kalivas JH, Andries E. Model updating for spectral calibration maintenance and transfer using 1-norm variants of Tikhonov regularization. Anal. Chem. 2010; 82(9): 3642-3649.
    • (2010) Anal. Chem. , vol.82 , Issue.9 , pp. 3642-3649
    • Kunz, M.R.1    Kalivas, J.H.2    Andries, E.3
  • 24
    • 84862766223 scopus 로고    scopus 로고
    • Application of 2-norm (L2) and 1-norm (L1) regularization variants for full wavelength and sparse spectral multivariate calibration models and maintenance
    • Kalivas JH. Application of 2-norm (L2) and 1-norm (L1) regularization variants for full wavelength and sparse spectral multivariate calibration models and maintenance. J. Chemometr. 2012; 26: 218-230.
    • (2012) J. Chemometr. , vol.26 , pp. 218-230
    • Kalivas, J.H.1
  • 25
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm
    • Gorodnitsky I, Rao B. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE T. Signal Proces. 1997; 45(3): 600-615.
    • (1997) IEEE T. Signal Proces. , vol.45 , Issue.3 , pp. 600-615
    • Gorodnitsky, I.1    Rao, B.2
  • 26
    • 0032712352 scopus 로고    scopus 로고
    • An affine scaling methodology for best basis selection
    • Rao B, Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE T. Signal Proces. 1999; 47(1): 187-200.
    • (1999) IEEE T. Signal Proces. , vol.47 , Issue.1 , pp. 187-200
    • Rao, B.1    Kreutz-Delgado, K.2
  • 29
    • 85153979130 scopus 로고    scopus 로고
    • Iteratively reweighted algorithms for compressive sensing. 2008 Proceedings of International Conference on Acoustics, Speech, Signal Processing (ICASSP), Las Vegas
    • Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. 2008 Proceedings of International Conference on Acoustics, Speech, Signal Processing (ICASSP), 869-3872: Las Vegas, 2008.
    • (2008) , pp. 869-3872
    • Chartrand, R.1    Yin, W.2
  • 30
    • 78651388598 scopus 로고    scopus 로고
    • Spectral multivariate calibration with wavelength selection using variants of Tikhonov regularization
    • Ottaway J, Kalivas JH, Andries E. Spectral multivariate calibration with wavelength selection using variants of Tikhonov regularization. Appl. Spectrosc. 2009; 64(12): 1388-1395.
    • (2009) Appl. Spectrosc. , vol.64 , Issue.12 , pp. 1388-1395
    • Ottaway, J.1    Kalivas, J.H.2    Andries, E.3
  • 32
    • 78650309373 scopus 로고    scopus 로고
    • Adaptively preconditioned Krylov spaces to identify irrelevant predictors
    • Kondylis A, Whittaker J. Adaptively preconditioned Krylov spaces to identify irrelevant predictors. Chemometr. Intell. Lab. Syst. 2010; 104: 205-213.
    • (2010) Chemometr. Intell. Lab. Syst. , vol.104 , pp. 205-213
    • Kondylis, A.1    Whittaker, J.2
  • 33
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002; 46: 389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 34
    • 67650369751 scopus 로고    scopus 로고
    • Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
    • Li H, Liang Y, Xu Q, Cao D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009; 648: 77-84.
    • (2009) Anal. Chim. Acta , vol.648 , pp. 77-84
    • Li, H.1    Liang, Y.2    Xu, Q.3    Cao, D.4
  • 36
    • 85153990267 scopus 로고    scopus 로고
    • Kernel support vector regression. Max Welling's Classnotes in Machine Learning [Accessed on February 12, 2013]
    • Welling M. Kernel support vector regression. Max Welling's Classnotes in Machine Learning. http://www.ics.uci.edu/~welling/classnotes/classnotes.html [Accessed on February 12, 2013].
    • Welling, M.1
  • 37
    • 85153985181 scopus 로고    scopus 로고
    • Kernel support vector machines. Max Welling's Classnotes in Machine Learning [Accessed on February 12, 2013]
    • Welling M. Kernel support vector machines. Max Welling's Classnotes in Machine Learning. http://www.ics.uci.edu/~welling/classnotes/classnotes.html [Accessed on February 12, 2013].
    • Welling, M.1
  • 39
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Software available at [Accessed on February 12, 2013]
    • Lin CJ, Chang CC. LIBSVM: a library for support vector machines. ACM TIST 2011; 2(3): 27:1-27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm [Accessed on February 12, 2013].
    • (2011) ACM TIST , vol.2 , Issue.3
    • Lin, C.J.1    Chang, C.C.2
  • 41
    • 76849100708 scopus 로고    scopus 로고
    • TSVR: an efficient twin support vector machine for regression
    • Peng X. TSVR: an efficient twin support vector machine for regression. Neural Networks 2009; 23: 356-372.
    • (2009) Neural Networks , vol.23 , pp. 356-372
    • Peng, X.1
  • 43
    • 0000798670 scopus 로고
    • Minimum principles for ill-posed problems
    • Franklin JN. Minimum principles for ill-posed problems. SIAM J. Math. Anal. 1978; 9(4): 638-650.
    • (1978) SIAM J. Math. Anal. , vol.9 , Issue.4 , pp. 638-650
    • Franklin, J.N.1
  • 44
    • 85153991363 scopus 로고    scopus 로고
    • SpaSM: a Matlab toolbox for performing sparse regression
    • submitted) [Accessed on February 12, 2013]
    • SpaSM: a Matlab toolbox for performing sparse regression. J. Stat. Softw. (submitted), http://www2.imm.dtu.dk/projects/spasm/ [Accessed on February 12, 2013].
    • J. Stat. Softw.
  • 45
    • 0024034712 scopus 로고
    • Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
    • Haaland DM, Thomas E. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988; 1988: 1193-2002.
    • (1988) Anal. Chem. , vol.1988 , pp. 1193-2002
    • Haaland, D.M.1    Thomas, E.2
  • 46
    • 77952606741 scopus 로고    scopus 로고
    • Multivariate calibration leverages and spectral F-ratios via a filter factor representation
    • Andries E, Kalivas JH. Multivariate calibration leverages and spectral F-ratios via a filter factor representation. J. Chemometr. 2010; 24(5): 249-260.
    • (2010) J. Chemometr. , vol.24 , Issue.5 , pp. 249-260
    • Andries, E.1    Kalivas, J.H.2
  • 48
    • 85153978269 scopus 로고    scopus 로고
    • NIR of corn samples for standardization benchmarking. Eigenvector Research [Accessed on February 12, 2013]
    • NIR of corn samples for standardization benchmarking. Eigenvector Research. http://www.eigenvector.com/data/Corn/index.html [Accessed on February 12, 2013].
  • 49
    • 85153978136 scopus 로고    scopus 로고
    • Wheat functionality as measured by diffuse reflectance of whole grain Canadian wheat. 2008 International Diffuse Reflectance Conference: Chambersburg, PA, USA [Accessed on February 12, 2013]
    • Wheat functionality as measured by diffuse reflectance of whole grain Canadian wheat. 2008 International Diffuse Reflectance Conference: Chambersburg, PA, USA, 2008. http://www.idrc-chambersburg.org/ss20082012.html [Accessed on February 12, 2013].
    • (2008)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.