-
1
-
-
78650649260
-
Variable selection in regression-a tutorial
-
Anderson CR, Bro R. Variable selection in regression-a tutorial. J.Chemom. 2010; 24(11-12):728-737.
-
(2010)
J.Chemom.
, vol.24
, Issue.11-12
, pp. 728-737
-
-
Anderson, C.R.1
Bro, R.2
-
2
-
-
79954634261
-
Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data
-
Balabin RM, Sergey SV. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data. Anal. Chim. Acta 2011; 692: 63-72.
-
(2011)
Anal. Chim. Acta
, vol.692
, pp. 63-72
-
-
Balabin, R.M.1
Sergey, S.V.2
-
3
-
-
0000364765
-
Robust modeling of erratic data
-
Claerbout J, Muir F. Robust modeling of erratic data. Geophysics 1973; 38: 826-844.
-
(1973)
Geophysics
, vol.38
, pp. 826-844
-
-
Claerbout, J.1
Muir, F.2
-
5
-
-
0019390023
-
Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution
-
Levy S, Fullagar P. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 1981; 46: 1235-1243.
-
(1981)
Geophysics
, vol.46
, pp. 1235-1243
-
-
Levy, S.1
Fullagar, P.2
-
6
-
-
0008988926
-
Linear inversion of band limited reflection seismograms
-
Santosa F, Symes WW. Linear inversion of band limited reflection seismograms. SIAM J. Sci. Stat. Comp. 1986; 7: 1250-1254.
-
(1986)
SIAM J. Sci. Stat. Comp.
, vol.7
, pp. 1250-1254
-
-
Santosa, F.1
Symes, W.W.2
-
7
-
-
85194972808
-
Regression shrinkage and selection via the LASSO
-
Tibshirani RJ. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B 1996; 58: 267-288.
-
(1996)
J. R. Stat. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.J.1
-
8
-
-
12844266177
-
Sparsity and smoothness via the fused LASSO
-
Tibshirani RJ, Saunders M, Rosset S, Zhu J, Knight K. Sparsity and smoothness via the fused LASSO. J. R. Stat. Soc. Ser. B 2005; 67: 91-108.
-
(2005)
J. R. Stat. Soc. Ser. B
, vol.67
, pp. 91-108
-
-
Tibshirani, R.J.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
9
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 2005; 68(1):49-67.
-
(2005)
J. R. Stat. Soc. Ser. B
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
10
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
Zou H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006; 101(476):1418-1429.
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
-
12
-
-
0032361278
-
Penalized regressions: the bridge versus the lasso
-
Fu W. Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat. 1998; 7(3): 397-416.
-
(1998)
J. Comput. Graph. Stat.
, vol.7
, Issue.3
, pp. 397-416
-
-
Fu, W.1
-
13
-
-
3242708140
-
Least angle regression
-
Efron B, Johnstone I, Hastie T, Tibshirani RJ. Least angle regression. Ann. Stat. 2004; 32(2): 407-499.
-
(2004)
Ann. Stat.
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Johnstone, I.2
Hastie, T.3
Tibshirani, R.J.4
-
14
-
-
45849107328
-
Pathwise coordinate optimization
-
Friedman J, Hastie T, Hofling H, Tibshirani H. Pathwise coordinate optimization. Ann. Appl. Stat. 2007; 1(2): 302-332.
-
(2007)
Ann. Appl. Stat.
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Hofling, H.3
Tibshirani, H.4
-
15
-
-
85153990823
-
-
Sparselab: seeking sparse solutions to linear systems of equations, Standford University [Accessed on February 12, 2013]
-
Sparselab: seeking sparse solutions to linear systems of equations, Standford University. http://sparselab.stanford.edu/ [Accessed on February 12, 2013].
-
-
-
-
16
-
-
85153977295
-
-
SLEP: a sparse learning package, Arizona State University [Accessed on February 12, 2013]
-
Liu J, Ji S, Ye J. SLEP: a sparse learning package, Arizona State University. http://www.public.asu.edu/~jye02/Software/SLEP [Accessed on February 12, 2013].
-
-
-
Liu, J.1
Ji, S.2
Ye, J.3
-
17
-
-
85153982840
-
-
Fast optimization methods for L1 regularization: a comparative study and 2 new approaches. Proceedings of 2007 European Conference on Machine Learning: Warsaw, Poland [Accessed on February 12, 2013]
-
Schmidt M, Fung G, Rosales R. Fast optimization methods for L1 regularization: a comparative study and 2 new approaches. Proceedings of 2007 European Conference on Machine Learning: Warsaw, Poland, 2007. http://www.di.ens.fr/~mschmidt [Accessed on February 12, 2013].
-
(2007)
-
-
Schmidt, M.1
Fung, G.2
Rosales, R.3
-
18
-
-
85153975843
-
-
Multiplicative updates for the lasso. Proceedings of 2007 IEEE International Workshop on Machine Learning for Signal Processing: Thessaloniki, Greece [Accessed on February 12, 2013]
-
Mørup M, Clemmensen L. Multiplicative updates for the lasso. Proceedings of 2007 IEEE International Workshop on Machine Learning for Signal Processing: Thessaloniki, Greece, 2007. http://www.mortenmorup.dk/ [Accessed on February 12, 2013].
-
(2007)
-
-
Mørup, M.1
Clemmensen, L.2
-
19
-
-
0001300994
-
Solution of incorrectly formulated problems and the regularization method
-
Tikhonov A. Solution of incorrectly formulated problems and the regularization method. English translation of Dokl. Akad. Nauk. SSSR 1963; 151: 501-504.
-
(1963)
English translation of Dokl. Akad. Nauk. SSSR
, vol.151
, pp. 501-504
-
-
Tikhonov, A.1
-
20
-
-
0002161961
-
Application of ridge analysis to regression problem
-
Hoerl A. Application of ridge analysis to regression problem. Chem. Eng. Prog. 1962; 58: 54-59.
-
(1962)
Chem. Eng. Prog.
, vol.58
, pp. 54-59
-
-
Hoerl, A.1
-
21
-
-
68349114771
-
Tikhonov regularization approaches for calibration maintenance and transfer
-
Kalivas JH, Siano GS, Andries E, Goicoechea HC. Tikhonov regularization approaches for calibration maintenance and transfer. Appl. Spectrosc. 2009; 63(7):800-809.
-
(2009)
Appl. Spectrosc.
, vol.63
, Issue.7
, pp. 800-809
-
-
Kalivas, J.H.1
Siano, G.S.2
Andries, E.3
Goicoechea, H.C.4
-
22
-
-
77951083710
-
Impact of standardization sample design on Tikhonov regularization variants for spectroscopic calibration maintenance and transfer
-
Kunz MR, Ottaway J, Kalivas JH, Andries E. Impact of standardization sample design on Tikhonov regularization variants for spectroscopic calibration maintenance and transfer. J. Chemometr. 2010; 24: 218-229.
-
(2010)
J. Chemometr.
, vol.24
, pp. 218-229
-
-
Kunz, M.R.1
Ottaway, J.2
Kalivas, J.H.3
Andries, E.4
-
23
-
-
77951854153
-
Model updating for spectral calibration maintenance and transfer using 1-norm variants of Tikhonov regularization
-
Kunz MR, Kalivas JH, Andries E. Model updating for spectral calibration maintenance and transfer using 1-norm variants of Tikhonov regularization. Anal. Chem. 2010; 82(9): 3642-3649.
-
(2010)
Anal. Chem.
, vol.82
, Issue.9
, pp. 3642-3649
-
-
Kunz, M.R.1
Kalivas, J.H.2
Andries, E.3
-
24
-
-
84862766223
-
Application of 2-norm (L2) and 1-norm (L1) regularization variants for full wavelength and sparse spectral multivariate calibration models and maintenance
-
Kalivas JH. Application of 2-norm (L2) and 1-norm (L1) regularization variants for full wavelength and sparse spectral multivariate calibration models and maintenance. J. Chemometr. 2012; 26: 218-230.
-
(2012)
J. Chemometr.
, vol.26
, pp. 218-230
-
-
Kalivas, J.H.1
-
25
-
-
0031102203
-
Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm
-
Gorodnitsky I, Rao B. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE T. Signal Proces. 1997; 45(3): 600-615.
-
(1997)
IEEE T. Signal Proces.
, vol.45
, Issue.3
, pp. 600-615
-
-
Gorodnitsky, I.1
Rao, B.2
-
26
-
-
0032712352
-
An affine scaling methodology for best basis selection
-
Rao B, Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE T. Signal Proces. 1999; 47(1): 187-200.
-
(1999)
IEEE T. Signal Proces.
, vol.47
, Issue.1
, pp. 187-200
-
-
Rao, B.1
Kreutz-Delgado, K.2
-
27
-
-
0003684449
-
-
Springer-Verlag: NewYork City, NY
-
Hastie T, Tibshirani RJ, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag: NewYork City, NY, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.J.2
Friedman, J.H.3
-
29
-
-
85153979130
-
-
Iteratively reweighted algorithms for compressive sensing. 2008 Proceedings of International Conference on Acoustics, Speech, Signal Processing (ICASSP), Las Vegas
-
Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. 2008 Proceedings of International Conference on Acoustics, Speech, Signal Processing (ICASSP), 869-3872: Las Vegas, 2008.
-
(2008)
, pp. 869-3872
-
-
Chartrand, R.1
Yin, W.2
-
30
-
-
78651388598
-
Spectral multivariate calibration with wavelength selection using variants of Tikhonov regularization
-
Ottaway J, Kalivas JH, Andries E. Spectral multivariate calibration with wavelength selection using variants of Tikhonov regularization. Appl. Spectrosc. 2009; 64(12): 1388-1395.
-
(2009)
Appl. Spectrosc.
, vol.64
, Issue.12
, pp. 1388-1395
-
-
Ottaway, J.1
Kalivas, J.H.2
Andries, E.3
-
32
-
-
78650309373
-
Adaptively preconditioned Krylov spaces to identify irrelevant predictors
-
Kondylis A, Whittaker J. Adaptively preconditioned Krylov spaces to identify irrelevant predictors. Chemometr. Intell. Lab. Syst. 2010; 104: 205-213.
-
(2010)
Chemometr. Intell. Lab. Syst.
, vol.104
, pp. 205-213
-
-
Kondylis, A.1
Whittaker, J.2
-
33
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002; 46: 389-422.
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
34
-
-
67650369751
-
Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
-
Li H, Liang Y, Xu Q, Cao D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009; 648: 77-84.
-
(2009)
Anal. Chim. Acta
, vol.648
, pp. 77-84
-
-
Li, H.1
Liang, Y.2
Xu, Q.3
Cao, D.4
-
35
-
-
0037695279
-
-
World Scientific: Singapore
-
Suykens J, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J. Least Squares Support Vector Machines. World Scientific: Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
36
-
-
85153990267
-
-
Kernel support vector regression. Max Welling's Classnotes in Machine Learning [Accessed on February 12, 2013]
-
Welling M. Kernel support vector regression. Max Welling's Classnotes in Machine Learning. http://www.ics.uci.edu/~welling/classnotes/classnotes.html [Accessed on February 12, 2013].
-
-
-
Welling, M.1
-
37
-
-
85153985181
-
-
Kernel support vector machines. Max Welling's Classnotes in Machine Learning [Accessed on February 12, 2013]
-
Welling M. Kernel support vector machines. Max Welling's Classnotes in Machine Learning. http://www.ics.uci.edu/~welling/classnotes/classnotes.html [Accessed on February 12, 2013].
-
-
-
Welling, M.1
-
39
-
-
79955702502
-
LIBSVM: a library for support vector machines
-
Software available at [Accessed on February 12, 2013]
-
Lin CJ, Chang CC. LIBSVM: a library for support vector machines. ACM TIST 2011; 2(3): 27:1-27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm [Accessed on February 12, 2013].
-
(2011)
ACM TIST
, vol.2
, Issue.3
-
-
Lin, C.J.1
Chang, C.C.2
-
40
-
-
0035789613
-
Proximal support vector machine classifiers
-
Provost F, Srikant R (eds). Association for Computing Machinery: New York
-
Fung G, Mangasarian O. Proximal support vector machine classifiers. In In Proceedings KDD-2001: Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA, Provost F, Srikant R (eds). Association for Computing Machinery: New York, 2001; 77-86.
-
(2001)
Proceedings KDD-2001: Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA
, pp. 77-86
-
-
Fung, G.1
Mangasarian, O.2
-
41
-
-
76849100708
-
TSVR: an efficient twin support vector machine for regression
-
Peng X. TSVR: an efficient twin support vector machine for regression. Neural Networks 2009; 23: 356-372.
-
(2009)
Neural Networks
, vol.23
, pp. 356-372
-
-
Peng, X.1
-
43
-
-
0000798670
-
Minimum principles for ill-posed problems
-
Franklin JN. Minimum principles for ill-posed problems. SIAM J. Math. Anal. 1978; 9(4): 638-650.
-
(1978)
SIAM J. Math. Anal.
, vol.9
, Issue.4
, pp. 638-650
-
-
Franklin, J.N.1
-
44
-
-
85153991363
-
SpaSM: a Matlab toolbox for performing sparse regression
-
submitted) [Accessed on February 12, 2013]
-
SpaSM: a Matlab toolbox for performing sparse regression. J. Stat. Softw. (submitted), http://www2.imm.dtu.dk/projects/spasm/ [Accessed on February 12, 2013].
-
J. Stat. Softw.
-
-
-
45
-
-
0024034712
-
Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
-
Haaland DM, Thomas E. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988; 1988: 1193-2002.
-
(1988)
Anal. Chem.
, vol.1988
, pp. 1193-2002
-
-
Haaland, D.M.1
Thomas, E.2
-
46
-
-
77952606741
-
Multivariate calibration leverages and spectral F-ratios via a filter factor representation
-
Andries E, Kalivas JH. Multivariate calibration leverages and spectral F-ratios via a filter factor representation. J. Chemometr. 2010; 24(5): 249-260.
-
(2010)
J. Chemometr.
, vol.24
, Issue.5
, pp. 249-260
-
-
Andries, E.1
Kalivas, J.H.2
-
48
-
-
85153978269
-
-
NIR of corn samples for standardization benchmarking. Eigenvector Research [Accessed on February 12, 2013]
-
NIR of corn samples for standardization benchmarking. Eigenvector Research. http://www.eigenvector.com/data/Corn/index.html [Accessed on February 12, 2013].
-
-
-
-
49
-
-
85153978136
-
-
Wheat functionality as measured by diffuse reflectance of whole grain Canadian wheat. 2008 International Diffuse Reflectance Conference: Chambersburg, PA, USA [Accessed on February 12, 2013]
-
Wheat functionality as measured by diffuse reflectance of whole grain Canadian wheat. 2008 International Diffuse Reflectance Conference: Chambersburg, PA, USA, 2008. http://www.idrc-chambersburg.org/ss20082012.html [Accessed on February 12, 2013].
-
(2008)
-
-
|