-
1
-
-
0036275409
-
Electric load forecasting: Literature survey and classification of methods
-
10.1080/00207720110067421
-
H.K. Alfares, and M. Nazeeruddin Electric load forecasting: Literature survey and classification of methods International Journal of Systems Science 33 1 2002 23 34 10.1080/00207720110067421
-
(2002)
International Journal of Systems Science
, vol.33
, Issue.1
, pp. 23-34
-
-
Alfares, H.K.1
Nazeeruddin, M.2
-
2
-
-
60649115993
-
-
D. M. Gabbay, & J. Siekmann (Eds.). (1st ed.). Berlin: Springer-Verlag
-
Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. (2009). Metalearning: Applications to Data Mining. In D. M. Gabbay, & J. Siekmann (Eds.). (1st ed.). Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-540- 73263-1.
-
(2009)
Metalearning: Applications to Data Mining
-
-
Brazdil, P.1
Giraud-Carrier, C.2
Soares, C.3
Vilalta, R.4
-
3
-
-
77955010271
-
AutoMLP: Simple, effective, fully automated learning rate and size adjustment
-
Snowbird, USA
-
Breuel, T. M., & Shafait, F. (2010). AutoMLP: Simple, effective, fully automated learning rate and size adjustment. The learning workshop, Snowbird, USA.
-
(2010)
The Learning Workshop
-
-
Breuel, T.M.1
Shafait, F.2
-
4
-
-
84876027834
-
-
Automatic autocorrelation and spectral analysis Springer-Verlag London
-
P.M.T. Broersen ARMASA toolbox with applications Automatic autocorrelation and spectral analysis 2006 Springer-Verlag London pp. 223-250
-
(2006)
ARMASA Toolbox with Applications
, pp. 223-250
-
-
Broersen, P.M.T.1
-
6
-
-
84876034187
-
-
Dresden
-
Dannecker, L., Boehm, M., Fischer, U., Rosenthal, F., Hackenbroich, G., & Lehner, W. (2010). FP7 Project MIRABEL D 4.1: State-of-The-Art report on forecasting. (p. 2). Dresden.
-
(2010)
FP7 Project MIRABEL D 4.1: State-of-The-Art Report on Forecasting
, pp. 2
-
-
Dannecker, L.1
Boehm, M.2
Fischer, U.3
Rosenthal, F.4
Hackenbroich, G.5
Lehner, W.6
-
7
-
-
79959326849
-
-
Leuven, Belgium
-
De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C., De Brabanter, J., Pelckmans, K., De Moor, B., Vandewalle J., & Suykens J. A. K. (2010). LS-SVMlab Toolbox Users Guide version 1.8 (Leuven, Belgium) (pp. 1-115). http://www.esat.kuleuven.be/sista/lssvmlab/.
-
(2010)
LS-SVMlab Toolbox Users Guide Version 1.8
, pp. 1-115
-
-
De Brabanter, K.1
Karsmakers, P.2
Ojeda, F.3
Alzate, C.4
De Brabanter, J.5
Pelckmans, K.6
De Moor, B.7
Vandewalle, J.8
Suykens, J.A.K.9
-
8
-
-
70350596405
-
Robustness of kernel based regression: A comparison of iterative weighting schemes
-
C. Alippi, M. Polycarpou, C. Panayiotou, G. Ellinas, Springer-Verlag Berlin 10.1007/978-3-642-04274-4 11
-
K. De Brabanter, K. Pelckmans, J. De Brabanter, M. Debruyne, J.A.K. Suykens, and M. Hubert Robustness of kernel based regression: A comparison of iterative weighting schemes C. Alippi, M. Polycarpou, C. Panayiotou, G. Ellinas, Lecture notes in computer science: Artificial neural networks-ICANN 2009 2009 Springer-Verlag Berlin 100 110 10.1007/978-3-642-04274-4 11
-
(2009)
Lecture Notes in Computer Science: Artificial Neural Networks-ICANN 2009
, pp. 100-110
-
-
De Brabanter, K.1
Pelckmans, K.2
De Brabanter, J.3
Debruyne, M.4
Suykens, J.A.K.5
Hubert, M.6
-
9
-
-
84876045040
-
-
ENTSO-E Accessed 28.12.12
-
ENTSO-E. (2012). http://www.entsoe.net/ Accessed 28.12.12.
-
(2012)
-
-
-
10
-
-
35148828595
-
Electric load forecasting using kernel-based modeling for nonlinear system identification
-
10.1039/c1em10127g
-
M. Espinoza, J.A.K. Suykens, R. Belmans, and B. De Moor Electric load forecasting using kernel-based modeling for nonlinear system identification IEEE Control Systems Magazine 27 5 2007 43 57 10.1039/c1em10127g
-
(2007)
IEEE Control Systems Magazine
, vol.27
, Issue.5
, pp. 43-57
-
-
Espinoza, M.1
Suykens, J.A.K.2
Belmans, R.3
De Moor, B.4
-
11
-
-
84876061385
-
-
European Commission
-
European Commission. (2012). Demography report 2010 (pp. 1-168).
-
(2012)
Demography Report 2010
, pp. 1-168
-
-
-
13
-
-
67349154089
-
Electric load forecasting methods: Tools for decision making
-
10.1016/j.ejor.2009.01.062
-
H. Hahn, S. Meyer-Nieberg, and S. Pickl Electric load forecasting methods: Tools for decision making European Journal of Operational Research 199 3 2009 902 907 10.1016/j.ejor.2009.01.062
-
(2009)
European Journal of Operational Research
, vol.199
, Issue.3
, pp. 902-907
-
-
Hahn, H.1
Meyer-Nieberg, S.2
Pickl, S.3
-
14
-
-
0033222038
-
Analysis of the value for unit commitment of improved load forecasts
-
B.F. Hobbs, S. Jitprapaikulsarn, S. Konda, V. Chankong, K.A. Loparo, and D.J. Maratukulam Analysis of the value for unit commitment of improved load forecasts IEEE Transactions on Power Systems 14 4 1999 1342 1348
-
(1999)
IEEE Transactions on Power Systems
, vol.14
, Issue.4
, pp. 1342-1348
-
-
Hobbs, B.F.1
Jitprapaikulsarn, S.2
Konda, S.3
Chankong, V.4
Loparo, K.A.5
Maratukulam, D.J.6
-
15
-
-
80052103053
-
Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm
-
10.1016/j.energy.2011.07.015
-
W.-C. Hong Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm Energy 36 9 2011 5568 5578 10.1016/j.energy.2011.07.015
-
(2011)
Energy
, vol.36
, Issue.9
, pp. 5568-5578
-
-
Hong, W.-C.1
-
16
-
-
33749517168
-
Another look at measures of forecast accuracy
-
10.1016/j.ijforecast.2006.03.001
-
R.J. Hyndman, and A.B. Koehler Another look at measures of forecast accuracy International Journal of Forecasting 22 4 2006 679 688 10.1016/j.ijforecast.2006.03.001
-
(2006)
International Journal of Forecasting
, vol.22
, Issue.4
, pp. 679-688
-
-
Hyndman, R.J.1
Koehler, A.B.2
-
18
-
-
77952545391
-
Meta-learning for time series forecasting and forecast combination
-
10.1016/j.neucom.2009.09.020
-
C. Lemke, and B. Gabrys Meta-learning for time series forecasting and forecast combination Neurocomputing 73 10-12 2010 2006 2016 10.1016/j.neucom. 2009.09.020
-
(2010)
Neurocomputing
, vol.73
, Issue.1012
, pp. 2006-2016
-
-
Lemke, C.1
Gabrys, B.2
-
20
-
-
0003056605
-
The algorithm selection problem
-
J.R. Rice The algorithm selection problem Advances in Computers 15 1976 65 118
-
(1976)
Advances in Computers
, Issue.15
, pp. 65-118
-
-
Rice, J.R.1
-
22
-
-
17444438778
-
New support vector algorithms
-
B. Scholköpf, A.J. Smola, R. Williamson, and P. Bartlett New support vector algorithms Neural Computation 12 5 2000 1207 1245 http://www.ncbi.nlm. nih.gov/pubmed/10905814
-
(2000)
Neural Computation
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Scholköpf, B.1
Smola, A.J.2
Williamson, R.3
Bartlett, P.4
-
23
-
-
84876061697
-
-
SCOPUS Accessed 28.12.12
-
SCOPUS. (2012). http://www.scopus.com/ Accessed 28.12.12.
-
(2012)
-
-
-
24
-
-
49749086726
-
Cross-disciplinary perspectives on meta-learning for algorithm selection
-
10.1145/1456650.1456656
-
K.A. Smith-Miles Cross-disciplinary perspectives on meta-learning for algorithm selection ACM Computing Surveys 41 1 2008 125 10.1145/1456650.1456656
-
(2008)
ACM Computing Surveys
, vol.41
, Issue.1
, pp. 125
-
-
Smith-Miles, K.A.1
-
25
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle Weighted least squares support vector machines: Robustness and sparse approximation Neurocomputing 48 2002 85 105
-
(2002)
Neurocomputing
, vol.48
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
27
-
-
84856296455
-
Short-term load forecasting with exponentially weighted methods
-
J.W. Taylor Short-term load forecasting with exponentially weighted methods IEEE Transactions on Power Systems 27 1 2012 458 464
-
(2012)
IEEE Transactions on Power Systems
, vol.27
, Issue.1
, pp. 458-464
-
-
Taylor, J.W.1
-
28
-
-
0035343072
-
Computational intelligence techniques for short-term electric load forecasting
-
S. Tzafestas, and E. Tzafestas Computational intelligence techniques for short-term electric load forecasting Journal of Intelligent and Robotic Systems 31 1-3 2001 7 68
-
(2001)
Journal of Intelligent and Robotic Systems
, vol.31
, Issue.13
, pp. 7-68
-
-
Tzafestas, S.1
Tzafestas, E.2
-
30
-
-
67349267030
-
Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series
-
10.1016/j.neucom.2008.10.017
-
X. Wang, K. Smith-Miles, and R. Hyndman Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series Neurocomputing 72 10-12 2009 2581 2594 10.1016/j.neucom.2008.10.017
-
(2009)
Neurocomputing
, vol.72
, Issue.1012
, pp. 2581-2594
-
-
Wang, X.1
Smith-Miles, K.2
Hyndman, R.3
-
31
-
-
79955542623
-
Secondary forecasting based on deviation analysis for short-term load forecasting
-
Y. Wang, Q. Xia, and C. Kang Secondary forecasting based on deviation analysis for short-term load forecasting IEEE Transactions on Power Systems 26 2 2011 500 507
-
(2011)
IEEE Transactions on Power Systems
, vol.26
, Issue.2
, pp. 500-507
-
-
Wang, Y.1
Xia, Q.2
Kang, C.3
-
32
-
-
84876025238
-
-
Weather Underground Accessed: 28.12.12
-
Weather Underground. (2012). http://www.wunderground.com/ Accessed: 28.12.12.
-
(2012)
-
-
-
33
-
-
0000459353
-
The lack of a priori distinctions between learning algorithms
-
[MIT Press 238 Main St., Suite 500, Cambridge, MA 02142-1046 USA]
-
D.H. Wolpert The lack of a priori distinctions between learning algorithms Neural Computation 8 7 1996 1341 1390 [MIT Press 238 Main St., Suite 500, Cambridge, MA 02142-1046 USA]
-
(1996)
Neural Computation
, vol.8
, Issue.7
, pp. 1341-1390
-
-
Wolpert, D.H.1
|