메뉴 건너뛰기




Volumn 40, Issue 11, 2013, Pages 4427-4437

Load forecasting using a multivariate meta-learning system

Author keywords

Electricity consumption prediction; Energy expert systems; Industrial applications; Meta learning; Power demand estimation; Short term electric load forecasting

Indexed keywords

ELECTRICITY-CONSUMPTION; GEOGRAPHICAL LOCATIONS; LOAD FORECASTING MODEL; META-LEARNING FRAMEWORKS; METALEARNING; POWER DEMANDS; SHORT-TERM ELECTRIC LOAD FORECASTING; TIME SERIES FORECASTING;

EID: 84876046688     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.01.047     Document Type: Article
Times cited : (61)

References (33)
  • 1
    • 0036275409 scopus 로고    scopus 로고
    • Electric load forecasting: Literature survey and classification of methods
    • 10.1080/00207720110067421
    • H.K. Alfares, and M. Nazeeruddin Electric load forecasting: Literature survey and classification of methods International Journal of Systems Science 33 1 2002 23 34 10.1080/00207720110067421
    • (2002) International Journal of Systems Science , vol.33 , Issue.1 , pp. 23-34
    • Alfares, H.K.1    Nazeeruddin, M.2
  • 3
    • 77955010271 scopus 로고    scopus 로고
    • AutoMLP: Simple, effective, fully automated learning rate and size adjustment
    • Snowbird, USA
    • Breuel, T. M., & Shafait, F. (2010). AutoMLP: Simple, effective, fully automated learning rate and size adjustment. The learning workshop, Snowbird, USA.
    • (2010) The Learning Workshop
    • Breuel, T.M.1    Shafait, F.2
  • 4
    • 84876027834 scopus 로고    scopus 로고
    • Automatic autocorrelation and spectral analysis Springer-Verlag London
    • P.M.T. Broersen ARMASA toolbox with applications Automatic autocorrelation and spectral analysis 2006 Springer-Verlag London pp. 223-250
    • (2006) ARMASA Toolbox with Applications , pp. 223-250
    • Broersen, P.M.T.1
  • 9
    • 84876045040 scopus 로고    scopus 로고
    • ENTSO-E Accessed 28.12.12
    • ENTSO-E. (2012). http://www.entsoe.net/ Accessed 28.12.12.
    • (2012)
  • 10
    • 35148828595 scopus 로고    scopus 로고
    • Electric load forecasting using kernel-based modeling for nonlinear system identification
    • 10.1039/c1em10127g
    • M. Espinoza, J.A.K. Suykens, R. Belmans, and B. De Moor Electric load forecasting using kernel-based modeling for nonlinear system identification IEEE Control Systems Magazine 27 5 2007 43 57 10.1039/c1em10127g
    • (2007) IEEE Control Systems Magazine , vol.27 , Issue.5 , pp. 43-57
    • Espinoza, M.1    Suykens, J.A.K.2    Belmans, R.3    De Moor, B.4
  • 11
    • 84876061385 scopus 로고    scopus 로고
    • European Commission
    • European Commission. (2012). Demography report 2010 (pp. 1-168).
    • (2012) Demography Report 2010 , pp. 1-168
  • 13
    • 67349154089 scopus 로고    scopus 로고
    • Electric load forecasting methods: Tools for decision making
    • 10.1016/j.ejor.2009.01.062
    • H. Hahn, S. Meyer-Nieberg, and S. Pickl Electric load forecasting methods: Tools for decision making European Journal of Operational Research 199 3 2009 902 907 10.1016/j.ejor.2009.01.062
    • (2009) European Journal of Operational Research , vol.199 , Issue.3 , pp. 902-907
    • Hahn, H.1    Meyer-Nieberg, S.2    Pickl, S.3
  • 15
    • 80052103053 scopus 로고    scopus 로고
    • Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm
    • 10.1016/j.energy.2011.07.015
    • W.-C. Hong Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm Energy 36 9 2011 5568 5578 10.1016/j.energy.2011.07.015
    • (2011) Energy , vol.36 , Issue.9 , pp. 5568-5578
    • Hong, W.-C.1
  • 16
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • 10.1016/j.ijforecast.2006.03.001
    • R.J. Hyndman, and A.B. Koehler Another look at measures of forecast accuracy International Journal of Forecasting 22 4 2006 679 688 10.1016/j.ijforecast.2006.03.001
    • (2006) International Journal of Forecasting , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 18
    • 77952545391 scopus 로고    scopus 로고
    • Meta-learning for time series forecasting and forecast combination
    • 10.1016/j.neucom.2009.09.020
    • C. Lemke, and B. Gabrys Meta-learning for time series forecasting and forecast combination Neurocomputing 73 10-12 2010 2006 2016 10.1016/j.neucom. 2009.09.020
    • (2010) Neurocomputing , vol.73 , Issue.1012 , pp. 2006-2016
    • Lemke, C.1    Gabrys, B.2
  • 20
    • 0003056605 scopus 로고
    • The algorithm selection problem
    • J.R. Rice The algorithm selection problem Advances in Computers 15 1976 65 118
    • (1976) Advances in Computers , Issue.15 , pp. 65-118
    • Rice, J.R.1
  • 23
    • 84876061697 scopus 로고    scopus 로고
    • SCOPUS Accessed 28.12.12
    • SCOPUS. (2012). http://www.scopus.com/ Accessed 28.12.12.
    • (2012)
  • 24
    • 49749086726 scopus 로고    scopus 로고
    • Cross-disciplinary perspectives on meta-learning for algorithm selection
    • 10.1145/1456650.1456656
    • K.A. Smith-Miles Cross-disciplinary perspectives on meta-learning for algorithm selection ACM Computing Surveys 41 1 2008 125 10.1145/1456650.1456656
    • (2008) ACM Computing Surveys , vol.41 , Issue.1 , pp. 125
    • Smith-Miles, K.A.1
  • 25
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle Weighted least squares support vector machines: Robustness and sparse approximation Neurocomputing 48 2002 85 105
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 27
    • 84856296455 scopus 로고    scopus 로고
    • Short-term load forecasting with exponentially weighted methods
    • J.W. Taylor Short-term load forecasting with exponentially weighted methods IEEE Transactions on Power Systems 27 1 2012 458 464
    • (2012) IEEE Transactions on Power Systems , vol.27 , Issue.1 , pp. 458-464
    • Taylor, J.W.1
  • 28
    • 0035343072 scopus 로고    scopus 로고
    • Computational intelligence techniques for short-term electric load forecasting
    • S. Tzafestas, and E. Tzafestas Computational intelligence techniques for short-term electric load forecasting Journal of Intelligent and Robotic Systems 31 1-3 2001 7 68
    • (2001) Journal of Intelligent and Robotic Systems , vol.31 , Issue.13 , pp. 7-68
    • Tzafestas, S.1    Tzafestas, E.2
  • 30
    • 67349267030 scopus 로고    scopus 로고
    • Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series
    • 10.1016/j.neucom.2008.10.017
    • X. Wang, K. Smith-Miles, and R. Hyndman Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series Neurocomputing 72 10-12 2009 2581 2594 10.1016/j.neucom.2008.10.017
    • (2009) Neurocomputing , vol.72 , Issue.1012 , pp. 2581-2594
    • Wang, X.1    Smith-Miles, K.2    Hyndman, R.3
  • 31
    • 79955542623 scopus 로고    scopus 로고
    • Secondary forecasting based on deviation analysis for short-term load forecasting
    • Y. Wang, Q. Xia, and C. Kang Secondary forecasting based on deviation analysis for short-term load forecasting IEEE Transactions on Power Systems 26 2 2011 500 507
    • (2011) IEEE Transactions on Power Systems , vol.26 , Issue.2 , pp. 500-507
    • Wang, Y.1    Xia, Q.2    Kang, C.3
  • 32
    • 84876025238 scopus 로고    scopus 로고
    • Weather Underground Accessed: 28.12.12
    • Weather Underground. (2012). http://www.wunderground.com/ Accessed: 28.12.12.
    • (2012)
  • 33
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • [MIT Press 238 Main St., Suite 500, Cambridge, MA 02142-1046 USA]
    • D.H. Wolpert The lack of a priori distinctions between learning algorithms Neural Computation 8 7 1996 1341 1390 [MIT Press 238 Main St., Suite 500, Cambridge, MA 02142-1046 USA]
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1341-1390
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.