메뉴 건너뛰기




Volumn 22, Issue 1, 2013, Pages 11-20

Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm

Author keywords

Artificial neural networks; Differential evolution; Estimation of distribution algorithm; Evolutionary computation; Forecasting; Genetic algorithms; Time series

Indexed keywords

EVOLUTIONARY ALGORITHMS; FORECASTING; GENETIC ALGORITHMS; TIME SERIES;

EID: 84871997305     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0741-0     Document Type: Article
Times cited : (128)

References (46)
  • 3
    • 79959415599 scopus 로고    scopus 로고
    • Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines
    • Barcelona, Spain
    • Cortez P (2010) Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN 2010), pp 3694-3701, Barcelona, Spain.
    • (2010) Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN 2010) , pp. 3694-3701
    • Cortez, P.1
  • 4
    • 77952552084 scopus 로고    scopus 로고
    • Feature selection for time series prediction a combined filter and wrapper approach for neural networks
    • Crone S, Kourentzes N (2010) Feature selection for time series prediction a combined filter and wrapper approach for neural networks. Neurocomputing 73: 1923-1936.
    • (2010) Neurocomputing , vol.73 , pp. 1923-1936
    • Crone, S.1    Kourentzes, N.2
  • 5
    • 79960633932 scopus 로고    scopus 로고
    • A linguistic approach to time series modeling with help of the F-transform
    • doi: 10. 1016/j. fss. 2011. 02. 017
    • Štěpnička M, Dvořák A, Pavliska V, Vavříčková L (2011) A linguistic approach to time series modeling with help of the F-transform. Fuzzy Sets Syst 180(1): 164-184. doi: 10. 1016/j. fss. 2011. 02. 017.
    • (2011) Fuzzy Sets Syst , vol.180 , Issue.1 , pp. 164-184
    • Štěpnička, M.1    Dvořák, A.2    Pavliska, V.3    Vavříčková, L.4
  • 6
    • 0036530967 scopus 로고    scopus 로고
    • Dens: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov N, Song Q (2002) Dens: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10: 144-154.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 8
    • 33845653930 scopus 로고    scopus 로고
    • A fusion model of HMM, ANN and GA for stock market forecasting
    • Hassan R, Nath B, Kirley M (2007) A fusion model of HMM, ANN and GA for stock market forecasting. Expert Systems with Applications 33: 171-180.
    • (2007) Expert Systems with Applications , vol.33 , pp. 171-180
    • Hassan, R.1    Nath, B.2    Kirley, M.3
  • 9
    • 3142666177 scopus 로고    scopus 로고
    • An ensemble of neural networks for weather forecasting
    • Maqsood I, Khan MR, Abraham A (2007) An ensemble of neural networks for weather forecasting. Neural Comput Appl 13(2): 112-122.
    • (2007) Neural Comput Appl , vol.13 , Issue.2 , pp. 112-122
    • Maqsood, I.1    Khan, M.R.2    Abraham, A.3
  • 12
    • 53049109819 scopus 로고    scopus 로고
    • A new intelligent system methodology for time series forecasting with artificial neural networks
    • doi: 10. 1007/s11063-008-9085-x
    • Ferreira TA, Vasconcelos GC, Adeodato PJ (2008) A new intelligent system methodology for time series forecasting with artificial neural networks. Neural Process Lett 28(2): 113-129. doi: 10. 1007/s11063-008-9085-x.
    • (2008) Neural Process Lett , vol.28 , Issue.2 , pp. 113-129
    • Ferreira, T.A.1    Vasconcelos, G.C.2    Adeodato, P.J.3
  • 13
    • 27144558589 scopus 로고    scopus 로고
    • Stepwise selection of artificial neural networks models for time series prediction
    • Department of Management Science Lancaster University Management School Lancaster, United Kingdom
    • Crone SF (2005) Stepwise selection of artificial neural networks models for time series prediction. Journal of Intelligent Systems, Department of Management Science Lancaster University Management School Lancaster, United Kingdom.
    • (2005) Journal of Intelligent Systems
    • Crone, S.F.1
  • 14
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14: 35-62.
    • (1998) Int J Forecast , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 15
    • 3142742672 scopus 로고    scopus 로고
    • Evolving time series forecasting ARMA models
    • Cortez P, Rocha M, Neves J (2004) Evolving time series forecasting ARMA models. J Heuristics 10(4): 415-429. doi: 10. 1023/B: HEUR. 0000034714. 09838. 1e.
    • (2004) J Heuristics , vol.10 , Issue.4 , pp. 415-429
    • Cortez, P.1    Rocha, M.2    Neves, J.3
  • 19
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao X, Lin Y (1997) A new evolutionary system for evolving artificial neural networks. Transactions on Neural Networks 8(3): 694-713.
    • (1997) Transactions on Neural Networks , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Lin, Y.2
  • 20
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • Kitano H (1990) Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4: 461-476.
    • (1990) Complex Systems , vol.4 , pp. 461-476
    • Kitano, H.1
  • 21
    • 0742306458 scopus 로고    scopus 로고
    • Meta-learning evolutionary artificial neural networks
    • Abraham A (2004) Meta-learning evolutionary artificial neural networks. Neurocomputing Journal 56c: 1-38.
    • (2004) Neurocomputing Journal , vol.56 c , pp. 1-38
    • Abraham, A.1
  • 22
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • Yao X (1993) A review of evolutionary artificial neural networks. International Journal of Intelligent Systems 8(4): 539-567.
    • (1993) International Journal of Intelligent Systems , vol.8 , Issue.4 , pp. 539-567
    • Yao, X.1
  • 23
    • 84900071834 scopus 로고    scopus 로고
    • Time series forecasting by evolutionary neural networks
    • J. Rubuñal and J. Dorado (Eds.), Hershey: Idea Group Publishing
    • Cortez P, Rocha M, Neves J (2006) Time series forecasting by evolutionary neural networks. In: Rubuñal J, Dorado J (eds) Artificial Neural Networks in Real-Life Applications. chapter III. Idea Group Publishing, Hershey, pp 47-70.
    • (2006) Artificial Neural Networks in Real-Life Applications. Chapter III , pp. 47-70
    • Cortez, P.1    Rocha, M.2    Neves, J.3
  • 24
    • 2042510997 scopus 로고    scopus 로고
    • Evolving the neural network model for forecasting air pollution time series
    • ISSN: 0952-1976
    • Niska H, Hiltunena T, Karppinenb A, Ruuskanena J Kolehmainena M (2004) Evolving the neural network model for forecasting air pollution time series. Eng Appl Artif Intell 17(2): 159-167. ISSN: 0952-1976.
    • (2004) Eng Appl Artif Intell , vol.17 , Issue.2 , pp. 159-167
    • Niska, H.1    Hiltunena, T.2    Karppinenb, A.3    Ruuskanena, J.4    Kolehmainena, M.5
  • 25
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • ISSN: 0022-1694
    • Chena Y-H, Chang F-J (2009) Evolutionary artificial neural networks for hydrological systems forecasting. J Hydrol 367(1-2): 125-137. ISSN: 0022-1694.
    • (2009) J Hydrol , vol.367 , Issue.1-2 , pp. 125-137
    • Chena, Y.-H.1    Chang, F.-J.2
  • 26
    • 29444444293 scopus 로고    scopus 로고
    • Time-series prediction using a local linear wavelet neural network
    • Chen Y, Yang B, Dong J (2005) Time-series prediction using a local linear wavelet neural network. Neurocomputing 69(4-6): 449-465.
    • (2005) Neurocomputing , vol.69 , Issue.4-6 , pp. 449-465
    • Chen, Y.1    Yang, B.2    Dong, J.3
  • 29
    • 78249267816 scopus 로고    scopus 로고
    • Neural networks training based on differential evolution algorithm compared with other architectures for weather forecasting 34
    • Abdul-Kader HM (2009) Neural networks training based on differential evolution algorithm compared with other architectures for weather forecasting 34. Int J Comput Sci Netw Secur 9(3): 92-99.
    • (2009) Int J Comput Sci Netw Secur , vol.9 , Issue.3 , pp. 92-99
    • Abdul-Kader, H.M.1
  • 31
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko G (1989) Approximation by superposition of a sigmoidal function. Math Control Signals Syst 2: 303-314.
    • (1989) Math Control Signals Syst , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 32
    • 84872004634 scopus 로고    scopus 로고
    • Prof. Dr. Andreas Zell WSI Computer Science Department, Computer Arquitecture, Software, Artif Neural Netw
    • Prof. Dr. Andreas Zell WSI Computer Science Department, Computer Arquitecture, Software, Artif Neural Netw http://www-ra. informatik. uni-tuebingen. de/SNNS/.
  • 34
    • 84871971376 scopus 로고    scopus 로고
    • November
    • http://www. obitko. com/tutorials/genetic-algorithms/parameters. php. November 2010.
    • (2010)
  • 35
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
    • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Opt 11: 341-359.
    • (1997) J Global Opt , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 38
    • 84871943232 scopus 로고    scopus 로고
    • Time Series Forecasting Competition for Neural Networks and Computational Intelligence
    • Time Series Forecasting Competition for Neural Networks and Computational Intelligence. http://www. neural-forecastingcompetition. com. Accessed on October 2010.
    • (2010)
  • 40
    • 63849099651 scopus 로고    scopus 로고
    • A new Bayesian formulation for Holt's exponential smoothing
    • Andrawis R, Atiya A (2009) A new Bayesian formulation for Holt's exponential smoothing. Journal of Forecasting 28(3): 218-234.
    • (2009) Journal of Forecasting , vol.28 , Issue.3 , pp. 218-234
    • Andrawis, R.1    Atiya, A.2
  • 41
    • 84871982753 scopus 로고    scopus 로고
    • Accessed on December
    • http://www. forecastpro. com/products/overview/index. htm. Accessed on December 2010.
    • (2010)
  • 44
    • 79959422165 scopus 로고    scopus 로고
    • Time series forecasting by evolving artificial neural networks using genetic algorithms and differential evolution
    • IJCNN-WCCI'10 Barcelona, Spain
    • Peralta J, Li X, Gutierrez G, Sanchis A (2010) Time series forecasting by evolving artificial neural networks using genetic algorithms and differential evolution. In Proceedings of the 2010 WCCI conference, IJCNN-WCCI'10, pages 3999-4006, Barcelona, Spain.
    • (2010) Proceedings of the 2010 WCCI conference , pp. 3999-4006
    • Peralta, J.1    Li, X.2    Gutierrez, G.3    Sanchis, A.4
  • 46
    • 84871994168 scopus 로고    scopus 로고
    • Hyndman RJ Time series data library Accessed on June
    • Hyndman RJ Time series data library, http://robjhyndman. com/TSDL/. Accessed on June 2011.
    • (2011)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.