-
1
-
-
0742306458
-
Meta learning evolutionary artificial neural networks
-
Abraham A. Meta learning evolutionary artificial neural networks. Neurocomputing 56 (2004) 1-38
-
(2004)
Neurocomputing
, vol.56
, pp. 1-38
-
-
Abraham, A.1
-
2
-
-
34548186348
-
-
D.H. Ackley, M.L. Littman, A case for Lamarckian Evolution, Addison-Wesley, Reading, MA, 1994, pp. 3-10.
-
-
-
-
3
-
-
0036529874
-
A Lamarckian approach for neural network training
-
Cortez P., Rocha M., and Neves J. A Lamarckian approach for neural network training. Neural Process. Lett. 15 2 (2002) 105-116
-
(2002)
Neural Process. Lett.
, vol.15
, Issue.2
, pp. 105-116
-
-
Cortez, P.1
Rocha, M.2
Neves, J.3
-
4
-
-
0031361611
-
Machine learning research: four current directions
-
Dietterich T. Machine learning research: four current directions. AI Mag. 18 4 (1997) 97-136
-
(1997)
AI Mag.
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.1
-
5
-
-
80053403826
-
-
T. Dietterich, Ensemble methods in machine learning, in: J. Kittler, F. Roli (Eds.), Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 1857, Springer, Berlin, 2001, pp. 1-15.
-
-
-
-
6
-
-
34548164504
-
-
A. Flexer, Statistical evaluation of neural networks experiments: Minimum requirements and current practice, in: Proceedings of the 13th European Meeting on Cybernetics and Systems Research, vol. 2, Vienna, Austria, 1996, pp. 1005-1008.
-
-
-
-
7
-
-
0003684449
-
-
Springer, NY, USA
-
Hastie T., Tibshirani R., and Friedman J. The Elements of Statistical Learning: Data Mining Inference and Prediction (2001), Springer, NY, USA
-
(2001)
The Elements of Statistical Learning: Data Mining Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
9
-
-
34548186842
-
-
R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, Quebec, Canada, August 1995, Morgan Kaufmann, Los Altos, CA, pp. 1137-1143.
-
-
-
-
10
-
-
0033730795
-
A study of the Lamarckian evolution of recurrent neural networks
-
Ku K., Mak M., and Siu W.-C. A study of the Lamarckian evolution of recurrent neural networks. IEEE Trans. Evol. Comput. 4 1 (2000) 31-42
-
(2000)
IEEE Trans. Evol. Comput.
, vol.4
, Issue.1
, pp. 31-42
-
-
Ku, K.1
Mak, M.2
Siu, W.-C.3
-
11
-
-
0031146959
-
Constructive algorithms for structure learning in feedforward neural networks for regression problems: a survey
-
Kwok T., and Yeung D. Constructive algorithms for structure learning in feedforward neural networks for regression problems: a survey. IEEE Trans. Neural Networks 8 3 (1999) 630-645
-
(1999)
IEEE Trans. Neural Networks
, vol.8
, Issue.3
, pp. 630-645
-
-
Kwok, T.1
Yeung, D.2
-
12
-
-
0030678288
-
-
Y. Liu, X. Yao, Evolving modular neural networks which generalize well, in: Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, New York, 1997, IEEE Press, New York, pp. 670-675.
-
-
-
-
13
-
-
0034315099
-
Evolutionary ensembles with negative correlation learning
-
Liu Y., Yao X., and Higuchi T. Evolutionary ensembles with negative correlation learning. IEEE Trans. Evol. Comput. 4 4 (2000) 380-387
-
(2000)
IEEE Trans. Evol. Comput.
, vol.4
, Issue.4
, pp. 380-387
-
-
Liu, Y.1
Yao, X.2
Higuchi, T.3
-
15
-
-
0036127265
-
Data mining in soft computing framework: a survey
-
Mitra S., Pal S., and Mitra P. Data mining in soft computing framework: a survey. IEEE Trans. Neural Networks 13 1 (2002) 3-14
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.1
, pp. 3-14
-
-
Mitra, S.1
Pal, S.2
Mitra, P.3
-
17
-
-
0028466750
-
Advanced supervised learning in multilayer perceptrons-from backpropagation to adaptive learning algorithms
-
Riedmiller M. Advanced supervised learning in multilayer perceptrons-from backpropagation to adaptive learning algorithms. Int. J. Comput. Stand. Interfaces 16 (1994) 265-278
-
(1994)
Int. J. Comput. Stand. Interfaces
, vol.16
, pp. 265-278
-
-
Riedmiller, M.1
-
18
-
-
0347586873
-
-
M. Rocha, P. Cortez, J. Neves, Evolutionary Neural Network Learning, in: F. Pires, S. Abreu, (Eds.), Progress in Artificial Intelligence, EPIA 2003 Proceedings, Lecture Notes in Artificial Intelligence, vol. 2902, Beja, Portugal, December 2003. Springer Berlin, pp. 24-28.
-
-
-
-
19
-
-
34548189940
-
-
M. Rocha, P. Cortez, J. Neves, Ensembles of artificial neural networks with heterogeneous topologies, in: Proceedings of the Fourth Symposium on Engineering of Intelligent Systems (EIS2004), CD-ROM edition, ICSC Academic Press, March 2004.
-
-
-
-
20
-
-
27144481879
-
-
M. Rocha, J. Neves, I. Rocha, E. Ferreira, Evolutionary algorithms for optimal control in fed-batch fermentation processes, in: G. Raidl et al., (Eds.), Proceedings of the Workshop on Evolutionary Bioinformatics-EvoWorkshops 2004, Lecture Notes in Computer Science, vol. 3005, Springer, Berlin, 2004, pp. 84-93.
-
-
-
-
21
-
-
0346325856
-
-
C. Soares, Is the UCI repository useful for data mining?, in: F. Pires, S. Abreu, (Eds.), Progress in Artificial Intelligence, EPIA 2003 Proceedings, Lecture Notes in Artificial Intelligence, vol. 2902, Beja, Portugal, 2003, Springer, Berlin, pp. 209-223.
-
-
-
-
22
-
-
34548184836
-
-
G. Thimm, E. Fiesler, Evaluating pruning methods, in: Proceedings of the International Symposium on Artificial Neural Networks, Taiwan, December 1995, pp. 20-25.
-
-
-
-
23
-
-
0025503558
-
Backpropagation through time: what it does and how to do it
-
Werbos P. Backpropagation through time: what it does and how to do it. Proc. IEEE 78 10 (1990) 1550-1560
-
(1990)
Proc. IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.1
-
25
-
-
0033362601
-
Evolving Artificial Neural Networks
-
Yao X. Evolving Artificial Neural Networks. Proc. IEEE 87 9 (1999) 1423-1447
-
(1999)
Proc. IEEE
, vol.87
, Issue.9
, pp. 1423-1447
-
-
Yao, X.1
-
26
-
-
0031143030
-
A new evolutionary system for evolving artificial neural networks
-
Yao X., and Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks 8 3 (1997) 694-713
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, Issue.3
, pp. 694-713
-
-
Yao, X.1
Liu, Y.2
|