메뉴 건너뛰기




Volumn 117, Issue 5, 2013, Pages 479-492

Comparison of mid-level feature coding approaches and pooling strategies in visual concept detection

Author keywords

Analytical pooling; Bag of Words; Comparison; Locality constrained Linear Coding; Max pooling; Mid level features; Power Normalisation; Soft Assignment; Sparse Coding

Indexed keywords

ANALYTICAL POOLING; BAG OF WORDS; COMPARISON; LINEAR CODING; MAX-POOLING; MID-LEVEL FEATURES; NORMALISATION; SOFT ASSIGNMENT; SPARSE CODING;

EID: 84875920809     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2012.10.010     Document Type: Article
Times cited : (71)

References (59)
  • 1
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • J. Sivic, and A. Zisserman Video google: a text retrieval approach to object matching in videos ICCV 2 2003 1470 1477
    • (2003) ICCV , vol.2 , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 3
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D.G. Lowe Object recognition from local scale-invariant features CVPR 2 1999 1150 1157
    • (1999) CVPR , vol.2 , pp. 1150-1157
    • Lowe, D.G.1
  • 4
    • 27644547620 scopus 로고    scopus 로고
    • A performance evaluation of local descriptors
    • K. Mikolajczyk, and C. Schmid A performance evaluation of local descriptors PAMI 27 2005 1615 1630
    • (2005) PAMI , vol.27 , pp. 1615-1630
    • Mikolajczyk, K.1    Schmid, C.2
  • 5
    • 57549108165 scopus 로고    scopus 로고
    • A comparison of color features for visual concept classification
    • K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek A comparison of color features for visual concept classification CIVR 2008 141 149
    • (2008) CIVR , pp. 141-149
    • Van De Sande, K.E.A.1    Gevers, T.2    Snoek, C.G.M.3
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks ML 20 1995 273 297
    • (1995) ML , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman Lost in quantization: improving particular object retrieval in large scale image databases. CVPR 2008
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 11
    • 84856299049 scopus 로고    scopus 로고
    • Soft assignment of visual words as linear coordinate coding and optimisation of its reconstruction error
    • P. Koniusz, and K. Mikolajczyk Soft assignment of visual words as linear coordinate coding and optimisation of its reconstruction error ICIP 2011
    • (2011) ICIP
    • Koniusz, P.1    Mikolajczyk, K.2
  • 12
    • 84863044549 scopus 로고    scopus 로고
    • In defence of soft-assignment coding
    • L. Lingqiao, L. Wang, and X. Liu In defence of soft-assignment coding ICCV 2011
    • (2011) ICCV
    • Lingqiao, L.1    Wang, L.2    Liu, X.3
  • 13
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • H. Lee, A. Battle, R. Raina, and A.Y. Ng Efficient sparse coding algorithms NIPS 2007 801 808
    • (2007) NIPS , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 14
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T.S. Huang Linear spatial pyramid matching using sparse coding for image classification CVPR 2009 1794 1801
    • (2009) CVPR , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.S.4
  • 15
    • 0027842081 scopus 로고
    • Matching pursuit with time-frequency dictionaries
    • S. Mallat, and Z. Zhang Matching pursuit with time-frequency dictionaries SP 41 1993 3397 3415
    • (1993) SP , vol.41 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 16
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • J.A. Tropp Greed is good: algorithmic results for sparse approximation IT 50 2004 2231 2242
    • (2004) IT , vol.50 , pp. 2231-2242
    • Tropp, J.A.1
  • 17
    • 84863401481 scopus 로고    scopus 로고
    • Nonlinear learning using local coordinate coding
    • K. Yu, T. Zhang, and Y. Gong Nonlinear learning using local coordinate coding NIPS 2009
    • (2009) NIPS
    • Yu, K.1    Zhang, T.2    Gong, Y.3
  • 18
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong Locality-constrained linear coding for image classification CVPR 2010
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 19
    • 77955994285 scopus 로고    scopus 로고
    • Local features are not lonely-laplacian sparse coding for image classification
    • S. Gao, I.W. Tsang, L. Chia, and P. Zhao Local features are not lonely-laplacian sparse coding for image classification CVPR 2010
    • (2010) CVPR
    • Gao, S.1    Tsang, I.W.2    Chia, L.3    Zhao, P.4
  • 20
    • 78149308464 scopus 로고    scopus 로고
    • Efficient highly over-complete sparse coding using a mixture model
    • J. Yang, K. Yu, and T. Huang Efficient highly over-complete sparse coding using a mixture model ECCV 2010 113 126
    • (2010) ECCV , pp. 113-126
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 21
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin, and C. Dance Fisher kernels on visual vocabularies for image categorization CVPR 2007 1 8
    • (2007) CVPR , pp. 1-8
    • Perronnin, F.1    Dance, C.2
  • 22
    • 78149348137 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink Improving the fisher kernel for large-scale image classification ECCV 2010 143 156
    • (2010) ECCV , pp. 143-156
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 23
    • 78149344615 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • X. Zhou, K. Yu, T. Zhang, and T.S. Huang Image classification using super-vector coding of local image descriptors ECCV 2010 141 154
    • (2010) ECCV , pp. 141-154
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.S.4
  • 24
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • H. Jegou, M. Douze, C. Schmid, and P. Pérez Aggregating local descriptors into a compact image representation CVPR 2010 3304 3311
    • (2010) CVPR , pp. 3304-3311
    • Jegou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 25
    • 84875867810 scopus 로고    scopus 로고
    • Compact tensor based image representation for similarity search
    • R. Negrel, D. Picard, and P.-H. Gosselin Compact tensor based image representation for similarity search ICIP 2012
    • (2012) ICIP
    • Negrel, R.1    Picard, D.2    Gosselin, P.-H.3
  • 26
    • 34948824863 scopus 로고    scopus 로고
    • Toward a discriminative codebook: Codeword selection across multi-resolution
    • L. Wang Toward a discriminative codebook: codeword selection across multi-resolution CVPR 2007 1 8
    • (2007) CVPR , pp. 1-8
    • Wang, L.1
  • 28
  • 29
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in vision algorithms
    • Y. Boureau, J. Ponce, and Y. LeCun A theoretical analysis of feature pooling in vision algorithms ICML 2010
    • (2010) ICML
    • Boureau, Y.1    Ponce, J.2    Lecun, Y.3
  • 30
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce Beyond bags of features: spatial pyramid matching for recognizing natural scene categories CVPR 2 2006 2169 2178
    • (2006) CVPR , vol.2 , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 31
    • 84856649187 scopus 로고    scopus 로고
    • Ask the locals: Multi-way local pooling for image recognition
    • Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun Ask the locals: multi-way local pooling for image recognition ICCV 2011
    • (2011) ICCV
    • Boureau, Y.1    Le Roux, N.2    Bach, F.3    Ponce, J.4    Lecun, Y.5
  • 32
    • 84856281771 scopus 로고    scopus 로고
    • Spatial coordinate coding to reduce histogram, representations, dominant angle and colour pyramid match
    • P. Koniusz, and K. Mikolajczyk Spatial coordinate coding to reduce histogram, representations, dominant angle and colour pyramid match ICIP 2011
    • (2011) ICIP
    • Koniusz, P.1    Mikolajczyk, K.2
  • 33
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman The devil is in the details: an evaluation of recent feature encoding methods BMVC 2011
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 34
    • 37849036011 scopus 로고    scopus 로고
    • Evaluating bag-of-visual-words representations in scene classification
    • J. Yang, Y.-G. Jiang, A. G. Hauptmann, C.-W. Ngo, Evaluating bag-of-visual-words representations in scene classification, in: CVIR Workshop, 2007, pp. 197-206.
    • (2007) CVIR Workshop , pp. 197-206
    • Yang, J.1    Jiang, Y.-G.2    Hauptmann, A.G.3    Ngo, C.-W.4
  • 35
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • A. Coates, and A. Ng The importance of encoding versus training with sparse coding and vector quantization ICML 2011 921 928
    • (2011) ICML , pp. 921-928
    • Coates, A.1    Ng, A.2
  • 36
    • 85032751780 scopus 로고    scopus 로고
    • Dictionary learning
    • I. Tosic, and P. Frossard Dictionary learning SPM 28 2011 27 38
    • (2011) SPM , vol.28 , pp. 27-38
    • Tosic, I.1    Frossard, P.2
  • 37
    • 33745200865 scopus 로고    scopus 로고
    • An investigation of practical approximate nearest neighbor algorithms
    • T. Liu, A.W. Moore, A. Gray, and K. Yang An investigation of practical approximate nearest neighbor algorithms NIPS 2004 825 832
    • (2004) NIPS , pp. 825-832
    • Liu, T.1    Moore, A.W.2    Gray, A.3    Yang, K.4
  • 38
    • 50649101051 scopus 로고    scopus 로고
    • Vector quantizing feature space with a regular lattice
    • T. Tuytelaars, and C. Schmid Vector quantizing feature space with a regular lattice ICCV 2007
    • (2007) ICCV
    • Tuytelaars, T.1    Schmid, C.2
  • 41
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro Online learning for matrix factorization and sparse coding JMLR 2010
    • (2010) JMLR
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 43
    • 33749268008 scopus 로고    scopus 로고
    • Generalized histogram intersection kernel for image recognition
    • S. Boughorbel, J.-P. Tarel, and N. Boujemaa Generalized histogram intersection kernel for image recognition ICIP 2005 161 164
    • (2005) ICIP , pp. 161-164
    • Boughorbel, S.1    Tarel, J.-P.2    Boujemaa, N.3
  • 44
    • 70450183957 scopus 로고    scopus 로고
    • On the burstiness of visual elements
    • H. Jégou, M. Douze, and C. Schmid On the burstiness of visual elements CVPR 2009 1169 1176
    • (2009) CVPR , pp. 1169-1176
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 45
    • 18544365764 scopus 로고    scopus 로고
    • Probability product kernels
    • T. Jebara, R. Kondor, and A. Howard Probability product kernels JMLR 5 2004 819 844
    • (2004) JMLR , vol.5 , pp. 819-844
    • Jebara, T.1    Kondor, R.2    Howard, A.3
  • 46
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-fei, R. Fergus, P. Perona, Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories, in: CVPR Workshop on Generative-Model Based Vision, 2004.
    • (2004) CVPR Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 47
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • M.E. Nilsback, and A. Zisserman Automated flower classification over a large number of classes ICVGIP 2008 722 729
    • (2008) ICVGIP , pp. 722-729
    • Nilsback, M.E.1    Zisserman, A.2
  • 48
    • 84862141743 scopus 로고    scopus 로고
    • The CLEF 2011 photo annotation and concept-based retrieval tasks
    • S. Nowak, K. Nagel, and J. Liebetra The CLEF 2011 photo annotation and concept-based retrieval tasks CLEF 2011
    • (2011) CLEF
    • Nowak, S.1    Nagel, K.2    Liebetra, J.3
  • 49
    • 70449621223 scopus 로고    scopus 로고
    • The MIR flickr retrieval evaluation
    • M.J. Huiskes, and M.S. Lew The MIR flickr retrieval evaluation MIR 2008 39 43
    • (2008) MIR , pp. 39-43
    • Huiskes, M.J.1    Lew, M.S.2
  • 50
    • 77952328425 scopus 로고    scopus 로고
    • New trends and ideas in visual concept detection: The MIR flickr retrieval evaluation initiative
    • M.J. Huiskes, B. Thomee, and M.S. Lew New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative MIR 2010 527 536
    • (2010) MIR , pp. 527-536
    • Huiskes, M.J.1    Thomee, B.2    Lew, M.S.3
  • 51
    • 78149489516 scopus 로고    scopus 로고
    • The university of surrey visual concept detection system at imageclef 2010: Working notes
    • M.A. Tahir, F. Yan, M. Barnard, M. Awais, K. Mikolajczyk, and J. Kittler The university of surrey visual concept detection system at imageclef 2010: working notes ICPR 2010
    • (2010) ICPR
    • Tahir, M.A.1    Yan, F.2    Barnard, M.3    Awais, M.4    Mikolajczyk, K.5    Kittler, J.6
  • 52
    • 84860144953 scopus 로고    scopus 로고
    • Group-sensitive multiple kernel learning for object recognition
    • J. Yang, Y. Tian, L.-Y. Duan, T. Huang, and W. Gao Group-sensitive multiple kernel learning for object recognition TIP 21 2012 2838 2852
    • (2012) TIP , vol.21 , pp. 2838-2852
    • Yang, J.1    Tian, Y.2    Duan, L.-Y.3    Huang, T.4    Gao, W.5
  • 53
    • 80052875476 scopus 로고    scopus 로고
    • Discriminative affine sparse codes for image classification
    • N. Kulkarni, and B. Li Discriminative affine sparse codes for image classification CVPR 2011 1609 1616
    • (2011) CVPR , pp. 1609-1616
    • Kulkarni, N.1    Li, B.2
  • 54
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • A. Bosch, A. Zisserman, and X. Munoz Image classification using random forests and ferns ICCV 2007
    • (2007) ICCV
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 55
    • 84856655843 scopus 로고    scopus 로고
    • A graph-matching kernel for object categorization
    • O. Duchenne, A. Joulin, and J. Ponce A graph-matching kernel for object categorization ICCV 2011
    • (2011) ICCV
    • Duchenne, O.1    Joulin, A.2    Ponce, J.3
  • 56
    • 84863041056 scopus 로고    scopus 로고
    • One step beyond bags of features: Visual categorization using components
    • J. Liu, C. Zhang, Q. Tian, C. Xu, H. Lu, and S. Ma One step beyond bags of features: visual categorization using components ICIP 2011
    • (2011) ICIP
    • Liu, J.1    Zhang, C.2    Tian, Q.3    Xu, C.4    Lu, H.5    Ma, S.6
  • 57
    • 77955989568 scopus 로고    scopus 로고
    • Lp norm multiple kernel fisher discriminant analysis for object and image categorisation
    • F. Yan, K. Mikolajczyk, M. Barnard, H. Cai, and J. Kittler Lp norm multiple kernel fisher discriminant analysis for object and image categorisation CVPR 2010
    • (2010) CVPR
    • Yan, F.1    Mikolajczyk, K.2    Barnard, M.3    Cai, H.4    Kittler, J.5
  • 58
    • 84922032448 scopus 로고    scopus 로고
    • The joint submission of the tu berlin and fraunhofer first (tubfi) to the imageclef2011 photo annotation task: Working notes
    • A. Binder, W. Samek, and M. Kawanabe The joint submission of the tu berlin and fraunhofer first (tubfi) to the imageclef2011 photo annotation task: Working notes CLEF 2011
    • (2011) CLEF
    • Binder, A.1    Samek, W.2    Kawanabe, M.3
  • 59
    • 84875942401 scopus 로고    scopus 로고
    • Semantic contexts and fisher vectors for the imageclef 2011 photo annotation task
    • Y. Su, and F. Jurie Semantic contexts and fisher vectors for the imageclef 2011 photo annotation task CLEF 2011
    • (2011) CLEF
    • Su, Y.1    Jurie, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.