-
4
-
-
78049448489
-
How do wind and solar power affect grid operations: the western wind and solar integration study
-
D. Lew, M. Milligan, G. Jordan, L. Freeman, N. Miller, K. Clark, R. Piwko, How do wind and solar power affect grid operations: the western wind and solar integration study, in: The Eighth International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms, 2009.
-
(2009)
The Eighth International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms
-
-
Lew, D.1
Milligan, M.2
Jordan, G.3
Freeman, L.4
Miller, N.5
Clark, K.6
Piwko, R.7
-
5
-
-
84875936903
-
-
The Seventh International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms
-
C.W. Potter, D. Lew, J. McCaa, S. Cheng, S. Eichelberger, E. Grimit, Creating the dataset for the western wind and solar integration study (USA), in: The Seventh International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms, 2008.
-
(2008)
Creating the dataset for the western wind and solar integration study (USA)
-
-
Potter, C.W.1
Lew, D.2
McCaa, J.3
Cheng, S.4
Eichelberger, S.5
Grimit, E.6
-
6
-
-
0001473437
-
On the estimation of a probability density function and mode
-
Parzen E. On the estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33:1065-1076.
-
(1962)
Ann. Math. Stat.
, vol.33
, pp. 1065-1076
-
-
Parzen, E.1
-
7
-
-
0003260456
-
Density Estimation for Statistics and Data Analysis
-
Chapman and Hall, London
-
B.W. Silverman, Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, vol. 26, Chapman and Hall, London, 1986.
-
(1986)
Monographs on Statistics and Applied Probability
, vol.26
-
-
Silverman, B.W.1
-
8
-
-
84875926066
-
-
〈〉 (February).
-
M. Milligan, K. Porter, E. DeMeo, P. Denholm, H. Holttinen, B. Kirby, N. Mille, A. Mills, M. OMalley, M. Schuerger, L. Soder, 〈〉 (February). http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5233741&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5233741.
-
-
-
Milligan, M.1
Porter, K.2
DeMeo, E.3
Denholm, P.4
Holttinen, H.5
Kirby, B.6
Mille, N.7
Mills, A.8
OMalley, M.9
Schuerger, M.10
Soder, L.11
-
10
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
11
-
-
0003408420
-
-
MIT Press, Cambridge, MA, USA
-
Schölkopf B., Smola A.J. Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond 2001, MIT Press, Cambridge, MA, USA.
-
(2001)
Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
12
-
-
43049128559
-
A review on the young history of the wind power short-term prediction
-
Costa A., Crespo A., Navarro J., Lizcano G., Madsen H., Feitosa E. A review on the young history of the wind power short-term prediction. Renew. Sustain. Energy Rev. 2008, 12(6):1725-1744.
-
(2008)
Renew. Sustain. Energy Rev.
, vol.12
, Issue.6
, pp. 1725-1744
-
-
Costa, A.1
Crespo, A.2
Navarro, J.3
Lizcano, G.4
Madsen, H.5
Feitosa, E.6
-
13
-
-
76549106923
-
Machine learning applications for load, price and wind power prediction in power systems
-
M. Negnevitsky, P. Mandal, A. Srivastava, Machine learning applications for load, price and wind power prediction in power systems, in: Intelligent System Applications to Power Systems (ISAP), 2009, pp. 1-6.
-
(2009)
Intelligent System Applications to Power Systems (ISAP)
, pp. 1-6
-
-
Negnevitsky, M.1
Mandal, P.2
Srivastava, A.3
-
14
-
-
0035451837
-
Using neural networks to estimate wind turbine
-
Shuhui P.G., Li S., Wunsch D.C., Ohair E.A., Giesselmann M.G. Using neural networks to estimate wind turbine. J. Guid. Control Dyn. 2001, 16(3):276-282.
-
(2001)
J. Guid. Control Dyn.
, vol.16
, Issue.3
, pp. 276-282
-
-
Shuhui, P.G.1
Li, S.2
Wunsch, D.C.3
Ohair, E.A.4
Giesselmann, M.G.5
-
15
-
-
79751505649
-
Bayesian adaptive combination of short-term wind speed forecasts from neural network models
-
Li G., Shi J., Zhou J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew. Energy 2011, 36(1):352-359.
-
(2011)
Renew. Energy
, vol.36
, Issue.1
, pp. 352-359
-
-
Li, G.1
Shi, J.2
Zhou, J.3
-
16
-
-
0442296729
-
Support vector machines for wind speed prediction
-
Mohandes M., Halawani T., Rehman S., Hussain A.A. Support vector machines for wind speed prediction. Renew. Energy 2004, 29(6):939-947.
-
(2004)
Renew. Energy
, vol.29
, Issue.6
, pp. 939-947
-
-
Mohandes, M.1
Halawani, T.2
Rehman, S.3
Hussain, A.A.4
-
17
-
-
77958144053
-
Genetic algorithm-piecewise support vector machine model for short term wind power prediction
-
J. Shi, Y. Yang, P. Wang, Y. Liu, S. Han, Genetic algorithm-piecewise support vector machine model for short term wind power prediction, in: Proceedings of the Eighth World Congress on Intelligent Control and Automation, 2010, pp. 2254-2258.
-
(2010)
Proceedings of the Eighth World Congress on Intelligent Control and Automation
, pp. 2254-2258
-
-
Shi, J.1
Yang, Y.2
Wang, P.3
Liu, Y.4
Han, S.5
-
18
-
-
77956017876
-
Wind speed prediction using support vector regression
-
P. Zhao, J. Xia, Y. Dai, J. He, Wind speed prediction using support vector regression, in: Industrial Electronics and Applications (ICIEA), 2010, pp. 882-886.
-
(2010)
Industrial Electronics and Applications (ICIEA)
, pp. 882-886
-
-
Zhao, P.1
Xia, J.2
Dai, Y.3
He, J.4
-
19
-
-
79751491467
-
The prediction and diagnosis of wind turbine faults
-
Kusiak A., Li W. The prediction and diagnosis of wind turbine faults. Renew. Energy 2011, 36(1):16-23.
-
(2011)
Renew. Energy
, vol.36
, Issue.1
, pp. 16-23
-
-
Kusiak, A.1
Li, W.2
-
20
-
-
84865131152
-
A generalized representer theorem
-
D.P. Helmbold, B. Williamson (Eds.)
-
B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, in: D.P. Helmbold, B. Williamson (Eds.), Proceedings of the 14th Annual Conference on Computational Learning Theory, 2001, pp. 416-426.
-
(2001)
Proceedings of the 14th Annual Conference on Computational Learning Theory
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
21
-
-
68949128341
-
-
Springer-Verlag, New York, NY, USA
-
Steinwart I., Christmann A. Support Vector Machines 2008, Springer-Verlag, New York, NY, USA.
-
(2008)
Support Vector Machines
-
-
Steinwart, I.1
Christmann, A.2
-
23
-
-
70350735981
-
Proximal support vector machine using local information
-
Yang X., Chen S., Chen B., Pan Z. Proximal support vector machine using local information. Neurocomputing 2009, 73(1-3):357-365.
-
(2009)
Neurocomputing
, vol.73
, Issue.1-3
, pp. 357-365
-
-
Yang, X.1
Chen, S.2
Chen, B.3
Pan, Z.4
-
24
-
-
78649457586
-
A scalable support vector machine for distributed classification in ad hoc sensor networks
-
Wang D., Zheng J., Zhou Y., Li J. A scalable support vector machine for distributed classification in ad hoc sensor networks. Neurocomputing 2010, 74(1-3):394-400.
-
(2010)
Neurocomputing
, vol.74
, Issue.1-3
, pp. 394-400
-
-
Wang, D.1
Zheng, J.2
Zhou, Y.3
Li, J.4
-
26
-
-
33845454236
-
Taming the curse of dimensionality in kernels and novelty detection
-
Springer-Verlag, A. Abraham, B. de Baets, M. Kppen, B. Nickolay (Eds.)
-
Evangelista P.F., Embrechts M.J., Szymanski B.K. Taming the curse of dimensionality in kernels and novelty detection. Applied Soft Computing Technologies. The Challenge of Complexity 2006, 431-444. Springer-Verlag. A. Abraham, B. de Baets, M. Kppen, B. Nickolay (Eds.).
-
(2006)
Applied Soft Computing Technologies. The Challenge of Complexity
, pp. 431-444
-
-
Evangelista, P.F.1
Embrechts, M.J.2
Szymanski, B.K.3
-
29
-
-
70350712150
-
A SOM-based approach to estimating product properties from spectroscopic measurements
-
Corona F., Liitiäinen E., Lendasse A., Sassu L., Melis S., Baratti R. A SOM-based approach to estimating product properties from spectroscopic measurements. Neurocomputing 2009, 73(1-3):71-79.
-
(2009)
Neurocomputing
, vol.73
, Issue.1-3
, pp. 71-79
-
-
Corona, F.1
Liitiäinen, E.2
Lendasse, A.3
Sassu, L.4
Melis, S.5
Baratti, R.6
-
30
-
-
77649236297
-
X-SOM and l-SOM. a double classification approach for missing value imputation
-
Merlin P., Sorjamaa A., Maillet B., Lendasse A. X-SOM and l-SOM. a double classification approach for missing value imputation. Neurocomputing 2010, 73(7-9):1103-1108.
-
(2010)
Neurocomputing
, vol.73
, Issue.7-9
, pp. 1103-1108
-
-
Merlin, P.1
Sorjamaa, A.2
Maillet, B.3
Lendasse, A.4
-
31
-
-
51649123837
-
Kernel-SOM based visualization of financial time series forecasting
-
D. Yu, Y. Qi, Y.-H. Xu, J.-Y. Yang, Kernel-SOM based visualization of financial time series forecasting, in: ICICIC, vol. 2, 2006, pp. 470-473.
-
(2006)
ICICIC
, vol.2
, pp. 470-473
-
-
Yu, D.1
Qi, Y.2
Xu, Y.-H.3
Yang, J.-Y.4
-
33
-
-
78349275330
-
Recognition and visualization of music sequences using self-organizing feature maps
-
T. Hein, O. Kramer, Recognition and visualization of music sequences using self-organizing feature maps, in: KI, 2010, pp. 160-167.
-
(2010)
KI
, pp. 160-167
-
-
Hein, T.1
Kramer, O.2
-
34
-
-
77954587499
-
Power prediction in smart grids with evolutionary local kernel regression
-
O. Kramer, B. Satzger, J. Lässig, Power prediction in smart grids with evolutionary local kernel regression, in: HAIS, vol. 1, 2010, pp. 262-269.
-
(2010)
HAIS
, vol.1
, pp. 262-269
-
-
Kramer, O.1
Satzger, B.2
Lässig, J.3
-
35
-
-
0032715981
-
Process monitoring and modeling using the self-organizing map
-
Alhoniemi E., Hollmen J., Simula O., Vesanto J. Process monitoring and modeling using the self-organizing map. Integrated Comput. Aided Eng. 1999, 6:3-14.
-
(1999)
Integrated Comput. Aided Eng.
, vol.6
, pp. 3-14
-
-
Alhoniemi, E.1
Hollmen, J.2
Simula, O.3
Vesanto, J.4
-
39
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
40
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum J.B., Silva V.D., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
Silva, V.D.2
Langford, J.C.3
-
41
-
-
70350721783
-
Applying pca neural models for the blind separation of signals
-
Diamantaras K.I., Papadimitriou T. Applying pca neural models for the blind separation of signals. Neurocomputing 2009, 73(1-3):3-9.
-
(2009)
Neurocomputing
, vol.73
, Issue.1-3
, pp. 3-9
-
-
Diamantaras, K.I.1
Papadimitriou, T.2
|