메뉴 건너뛰기




Volumn 109, Issue , 2013, Pages 84-93

Wind energy prediction and monitoring with neural computation

Author keywords

Dimension reduction; Self organizing feature maps; Support vector regression; Time series monitoring; Wind energy; Wind prediction

Indexed keywords

DIMENSION REDUCTION; DIMENSION REDUCTION TECHNIQUES; MONITORING TECHNIQUES; NATIONAL RENEWABLE ENERGY LABORATORY; NEURAL COMPUTATIONS; SELF-ORGANIZING FEATURE MAP; SUPPORT VECTOR REGRESSION (SVR); WIND PREDICTION;

EID: 84875913363     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.07.029     Document Type: Article
Times cited : (33)

References (41)
  • 6
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and mode
    • Parzen E. On the estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33:1065-1076.
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 7
    • 0003260456 scopus 로고
    • Density Estimation for Statistics and Data Analysis
    • Chapman and Hall, London
    • B.W. Silverman, Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, vol. 26, Chapman and Hall, London, 1986.
    • (1986) Monographs on Statistics and Applied Probability , vol.26
    • Silverman, B.W.1
  • 10
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 15
    • 79751505649 scopus 로고    scopus 로고
    • Bayesian adaptive combination of short-term wind speed forecasts from neural network models
    • Li G., Shi J., Zhou J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew. Energy 2011, 36(1):352-359.
    • (2011) Renew. Energy , vol.36 , Issue.1 , pp. 352-359
    • Li, G.1    Shi, J.2    Zhou, J.3
  • 16
  • 19
    • 79751491467 scopus 로고    scopus 로고
    • The prediction and diagnosis of wind turbine faults
    • Kusiak A., Li W. The prediction and diagnosis of wind turbine faults. Renew. Energy 2011, 36(1):16-23.
    • (2011) Renew. Energy , vol.36 , Issue.1 , pp. 16-23
    • Kusiak, A.1    Li, W.2
  • 23
    • 70350735981 scopus 로고    scopus 로고
    • Proximal support vector machine using local information
    • Yang X., Chen S., Chen B., Pan Z. Proximal support vector machine using local information. Neurocomputing 2009, 73(1-3):357-365.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 357-365
    • Yang, X.1    Chen, S.2    Chen, B.3    Pan, Z.4
  • 24
    • 78649457586 scopus 로고    scopus 로고
    • A scalable support vector machine for distributed classification in ad hoc sensor networks
    • Wang D., Zheng J., Zhou Y., Li J. A scalable support vector machine for distributed classification in ad hoc sensor networks. Neurocomputing 2010, 74(1-3):394-400.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 394-400
    • Wang, D.1    Zheng, J.2    Zhou, Y.3    Li, J.4
  • 26
  • 29
    • 70350712150 scopus 로고    scopus 로고
    • A SOM-based approach to estimating product properties from spectroscopic measurements
    • Corona F., Liitiäinen E., Lendasse A., Sassu L., Melis S., Baratti R. A SOM-based approach to estimating product properties from spectroscopic measurements. Neurocomputing 2009, 73(1-3):71-79.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 71-79
    • Corona, F.1    Liitiäinen, E.2    Lendasse, A.3    Sassu, L.4    Melis, S.5    Baratti, R.6
  • 30
    • 77649236297 scopus 로고    scopus 로고
    • X-SOM and l-SOM. a double classification approach for missing value imputation
    • Merlin P., Sorjamaa A., Maillet B., Lendasse A. X-SOM and l-SOM. a double classification approach for missing value imputation. Neurocomputing 2010, 73(7-9):1103-1108.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1103-1108
    • Merlin, P.1    Sorjamaa, A.2    Maillet, B.3    Lendasse, A.4
  • 31
    • 51649123837 scopus 로고    scopus 로고
    • Kernel-SOM based visualization of financial time series forecasting
    • D. Yu, Y. Qi, Y.-H. Xu, J.-Y. Yang, Kernel-SOM based visualization of financial time series forecasting, in: ICICIC, vol. 2, 2006, pp. 470-473.
    • (2006) ICICIC , vol.2 , pp. 470-473
    • Yu, D.1    Qi, Y.2    Xu, Y.-H.3    Yang, J.-Y.4
  • 33
    • 78349275330 scopus 로고    scopus 로고
    • Recognition and visualization of music sequences using self-organizing feature maps
    • T. Hein, O. Kramer, Recognition and visualization of music sequences using self-organizing feature maps, in: KI, 2010, pp. 160-167.
    • (2010) KI , pp. 160-167
    • Hein, T.1    Kramer, O.2
  • 34
    • 77954587499 scopus 로고    scopus 로고
    • Power prediction in smart grids with evolutionary local kernel regression
    • O. Kramer, B. Satzger, J. Lässig, Power prediction in smart grids with evolutionary local kernel regression, in: HAIS, vol. 1, 2010, pp. 262-269.
    • (2010) HAIS , vol.1 , pp. 262-269
    • Kramer, O.1    Satzger, B.2    Lässig, J.3
  • 36
    • 0000742931 scopus 로고
    • A neural gas network learns topologies
    • Elsevier
    • T. Martinetz, K. Schulten, A neural gas network learns topologies, in: Artificial Neural Networks, Elsevier, 1991, pp. 397-402.
    • (1991) Artificial Neural Networks , pp. 397-402
    • Martinetz, T.1    Schulten, K.2
  • 39
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 40
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., Silva V.D., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.D.2    Langford, J.C.3
  • 41
    • 70350721783 scopus 로고    scopus 로고
    • Applying pca neural models for the blind separation of signals
    • Diamantaras K.I., Papadimitriou T. Applying pca neural models for the blind separation of signals. Neurocomputing 2009, 73(1-3):3-9.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 3-9
    • Diamantaras, K.I.1    Papadimitriou, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.