메뉴 건너뛰기




Volumn 73, Issue 1-3, 2009, Pages 357-365

Proximal support vector machine using local information

Author keywords

Eigenvalue; Manifold learning; Outlier; Proximal classification

Indexed keywords

BENCHMARK DATASETS; CLASSIFICATION ABILITY; COMPUTATION TIME; EIGENVALUE; GENERALIZED EIGENVALUE PROBLEMS; GENERALIZED EIGENVALUES; GEOMETRIC INTERPRETATION; HALF SPACES; LOCAL INFORMATION; MANIFOLD LEARNING; MATRIX SINGULARITY; OUTLIER; PROXIMAL CLASSIFICATION; PROXIMAL SUPPORT VECTOR MACHINES; QUADRATIC PROGRAMS; SUPERVISED LEARNING METHODS; SVM CLASSIFICATION;

EID: 70350735981     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.08.002     Document Type: Article
Times cited : (30)

References (44)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machine for pattern recognition
    • Burges C.J.C. A tutorial on support vector machine for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 1-47
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 1-47
    • Burges, C.J.C.1
  • 2
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A., and Muller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 (1998) 1299-1319
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 3
  • 4
    • 84902205493 scopus 로고    scopus 로고
    • Comparison of view-based object recognition algorithms using realistic 3d models
    • C. von der Malsburg, W. von Seelen, J.-C. Vorbrüggen, B. Sendhoff Eds, Proceedings of the International Conference on Artificial Neural Networks, Springer, Bochum
    • V. Blanz, B. Scholkopf, H. Bulthoff, C. Burges, V. Vapnik, T. Vetter, Comparison of view-based object recognition algorithms using realistic 3d models, in: C. von der Malsburg, W. von Seelen, J.-C. Vorbrüggen, B. Sendhoff (Eds.), Proceedings of the International Conference on Artificial Neural Networks, Lecture Notes in Computer Science, vol. 1112, Springer, Bochum, 1996, pp. 251-256.
    • (1996) Lecture Notes in Computer Science , vol.1112 , pp. 251-256
    • Blanz, V.1    Scholkopf, B.2    Bulthoff, H.3    Burges, C.4    Vapnik, V.5    Vetter, T.6
  • 5
    • 0004545635 scopus 로고    scopus 로고
    • Identifying speaker with support vector networks
    • Sydney
    • M. Schmidt, Identifying speaker with support vector networks, in: Interface '96 Proceedings, Sydney, 1996.
    • (1996) Interface '96 Proceedings
    • Schmidt, M.1
  • 7
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims, Text categorization with support vector machines: learning with many relevant features, in: Proceedings of the 10th European Conference on Machine Learning, 1999, pp. 137-142.
    • (1999) Proceedings of the 10th European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 11
    • 0036779076 scopus 로고    scopus 로고
    • Improved k-nearset neighbor classification
    • Wu Y., Ianakiev K., and Govindaraju V. Improved k-nearset neighbor classification. Pattern Recognition 35 (2002) 2311-2318
    • (2002) Pattern Recognition , vol.35 , pp. 2311-2318
    • Wu, Y.1    Ianakiev, K.2    Govindaraju, V.3
  • 14
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000) 2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 15
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 18
    • 84880738109 scopus 로고    scopus 로고
    • Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting
    • IJCAI
    • P. Mordohai, G. Medioni, Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting, in: 19th International Joint Conference on Artificial Intelligence (IJCAI), 2005, pp. 798-803.
    • (2005) 19th International Joint Conference on Artificial Intelligence , pp. 798-803
    • Mordohai, P.1    Medioni, G.2
  • 21
    • 38249003013 scopus 로고
    • Minimum MSE estimation of a regression model with fixed effects from a series of cross-sections
    • Marno V., and Theo N. Minimum MSE estimation of a regression model with fixed effects from a series of cross-sections. Journal of Econometrics 59 1-2 (1993) 125-136
    • (1993) Journal of Econometrics , vol.59 , Issue.1-2 , pp. 125-136
    • Marno, V.1    Theo, N.2
  • 24
    • 70350715569 scopus 로고    scopus 로고
    • Ph.D. Thesis, Technischen Universität, Berlin, Germany
    • S. Mika, Kernel Fisher discriminants, Ph.D. Thesis, Technischen Universität, Berlin, Germany, 2002.
    • (2002)
    • Mika, S.1    Fisher discriminants, K.2
  • 26
    • 0000068822 scopus 로고    scopus 로고
    • A mathematical approach to kernel Fisher algorithm
    • Leen T.K., and Dietterich Völker Tresp T.G. (Eds), MIT Press, Cambridge, MA
    • Mike S. A mathematical approach to kernel Fisher algorithm. In: Leen T.K., and Dietterich Völker Tresp T.G. (Eds). Advances in Neural Information Processing Systems vol. 13 (2001), MIT Press, Cambridge, MA 591-597
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 591-597
    • Mike, S.1
  • 27
    • 2542538718 scopus 로고    scopus 로고
    • The geometry of kernel canonical correlation analysis
    • Technical Report No. 108, Max Planck Institute for Biological Cybernetics, Tubingen, Germany, May
    • M. Kuss, T. Graepel, The geometry of kernel canonical correlation analysis, Technical Report No. 108, Max Planck Institute for Biological Cybernetics, Tubingen, Germany, May 2003.
    • (2003)
    • Kuss, M.1    Graepel, T.2
  • 28
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schlkopf B., Smola A., and Miller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 5 (1998)
    • (1998) Neural Computation , vol.10 , Issue.5
    • Schlkopf, B.1    Smola, A.2    Miller, K.-R.3
  • 29
    • 0002570938 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • Scholkopf N., Burges C.J.C., and Smola A. (Eds), MIT Press, Cambridge, MA
    • Scholkopf B., Smola A., and Muller K.-R. Kernel principal component analysis. In: Scholkopf N., Burges C.J.C., and Smola A. (Eds). Advance in Kernel Methods, Support Vector Learning (1999), MIT Press, Cambridge, MA
    • (1999) Advance in Kernel Methods, Support Vector Learning
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 30
    • 33646337913 scopus 로고    scopus 로고
    • Optimizing kernel parameters and regularization coefficients for non-linear discriminant analysis
    • Centeno T.P., and Lawrence N.D. Optimizing kernel parameters and regularization coefficients for non-linear discriminant analysis. Journal of Machine Learning Research 7 (2006) 455-491
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 455-491
    • Centeno, T.P.1    Lawrence, N.D.2
  • 32
    • 19344375345 scopus 로고    scopus 로고
    • Enhanced FMAM based on empirical kernel map
    • M. Wang, S. Chen, Enhanced FMAM based on empirical kernel map, IEEE Transaction on Neural Networks 16(3), pp. 557-564.
    • IEEE Transaction on Neural Networks , vol.16 , Issue.3 , pp. 557-564
    • Wang, M.1    Chen, S.2
  • 33
    • 33646243800 scopus 로고    scopus 로고
    • Handwritten digit recognition with nonlinear Fisher discriminant analysis
    • Proceedings of ICANN 3696, Springer, pp
    • P. Berkes, Handwritten digit recognition with nonlinear Fisher discriminant analysis, in: Proceedings of ICANN Volume 2, Lecture Notes in Computer Science, vol. 3696, Springer, pp. 285-287.
    • Lecture Notes in Computer Science , vol.2 , pp. 285-287
    • Berkes, P.1
  • 34
    • 0035309019 scopus 로고    scopus 로고
    • A shape- and texture-based enhanced Fisher classifier for face recognition
    • Liu C.J., and Wechsler H. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing 10 4 (2001) 598-608
    • (2001) IEEE Transactions on Image Processing , vol.10 , Issue.4 , pp. 598-608
    • Liu, C.J.1    Wechsler, H.2
  • 38
    • 33751080152 scopus 로고    scopus 로고
    • M.R. Guarracino, C. Cifarelli, O. Seref, P.M. Pardalos, A parallel classification method for genomic and proteomic problems, in: 20th International Conference on Advanced Information Networking and Applications-2 (AINA'06), 2006, pp. 588-592.
    • M.R. Guarracino, C. Cifarelli, O. Seref, P.M. Pardalos, A parallel classification method for genomic and proteomic problems, in: 20th International Conference on Advanced Information Networking and Applications-Volume 2 (AINA'06), 2006, pp. 588-592.
  • 41
    • 34548050716 scopus 로고    scopus 로고
    • A study on three linear discriminant analysis based methods in small sample size problem
    • Liu J., Chen S., and Tan X. A study on three linear discriminant analysis based methods in small sample size problem. Pattern Recognition 41 1 (2008) 102-116
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 102-116
    • Liu, J.1    Chen, S.2    Tan, X.3
  • 42
    • 2442543154 scopus 로고    scopus 로고
    • Alternative linear discriminant classifier
    • Chen S., and Yang X. Alternative linear discriminant classifier. Pattern Recognition 37 7 (2004) 1545-1547
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1545-1547
    • Chen, S.1    Yang, X.2
  • 43
    • 70350744457 scopus 로고    scopus 로고
    • P.M. Murphy, D.W. Aha, UCI machine learning repository 〈www.ics.uci.edu/~mlearn/ML Repository.html〉, 1992.
    • P.M. Murphy, D.W. Aha, UCI machine learning repository 〈www.ics.uci.edu/~mlearn/ML Repository.html〉, 1992.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.