-
1
-
-
20444434710
-
How to search a social network
-
Adamic, L.A., Adar, E.: How to search a social network. Social Networks 27, 2005 (2005)
-
(2005)
Social Networks
, vol.27
, pp. 2005
-
-
Adamic, L.A.1
Adar, E.2
-
3
-
-
79952397059
-
Everyone's an influencer: Quantifying influence on twitter
-
Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone's an influencer: quantifying influence on twitter. In: WSDM, pp. 65-74 (2011)
-
(2011)
WSDM
, pp. 65-74
-
-
Bakshy, E.1
Hofman, J.M.2
Mason, W.A.3
Watts, D.J.4
-
4
-
-
84890768200
-
Measuring user influence in twitter: The million follower fallacy
-
AAAI
-
Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring user influence in twitter: The million follower fallacy. In: AAAI, ICWSM (2010)
-
(2010)
ICWSM
-
-
Cha, M.1
Haddadi, H.2
Benevenuto, F.3
Gummadi, K.P.4
-
5
-
-
0035789667
-
Mining the network value of customers
-
ACM
-
Domingos, P., Richardson, M.: Mining the network value of customers. In: SIGKDD, pp. 57-66. ACM (2001)
-
(2001)
SIGKDD
, pp. 57-66
-
-
Domingos, P.1
Richardson, M.2
-
7
-
-
84856138936
-
Predicting influential users in online social networks
-
abs/1005.4882
-
Ghosh, R., Lerman, K.: Predicting influential users in online social networks. CoRR, abs/1005.4882 (2010)
-
(2010)
CoRR
-
-
Ghosh, R.1
Lerman, K.2
-
8
-
-
77950933438
-
Learning influence probabilities in social networks
-
Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: WSDM, pp. 241-250 (2010)
-
(2010)
WSDM
, pp. 241-250
-
-
Goyal, A.1
Bonchi, F.2
Lakshmanan, L.V.S.3
-
9
-
-
19944399438
-
Information diffusion through blogspace
-
ACM
-
Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. In: WWW, pp. 491-501. ACM (2004)
-
(2004)
WWW
, pp. 491-501
-
-
Gruhl, D.1
Guha, R.2
Liben-Nowell, D.3
Tomkins, A.4
-
10
-
-
7444220174
-
Mining of Web-Page Visiting Patterns with Continuous-Time Markov Models
-
Advances in Knowledge Discovery and Data Mining
-
Huang, Q., Yang, Q., Huang, J.Z., Ng, M.K.: Mining of web-page visiting patterns with continuous-time markov models. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 549-558. Springer, Heidelberg (2004) (Pubitemid 38824940)
-
(2004)
LECTURE NOTES in COMPUTER SCIENCE
, Issue.3056
, pp. 549-558
-
-
Huang, Q.1
Yang, Q.2
Huang, J.Z.3
Ng, M.K.4
-
11
-
-
33747172362
-
Maximizing the spread of influence through a social network
-
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: SIGKDD, pp. 137-146 (2003)
-
(2003)
SIGKDD
, pp. 137-146
-
-
Kempe, D.1
Kleinberg, J.2
Tardos, É.3
-
12
-
-
77954619566
-
What is twitter, a social network or a news media?
-
Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: WWW, pp. 591-600 (2010)
-
(2010)
WWW
, pp. 591-600
-
-
Kwak, H.1
Lee, C.2
Park, H.3
Moon, S.4
-
13
-
-
57349156602
-
Browserank: Letting web users vote for page importance
-
Liu, Y., Gao, B., Liu, T.Y., Zhang, Y., Ma, Z., He, S., Li, H.: Browserank: letting web users vote for page importance. In: SIGIR, pp. 451-458 (2008)
-
(2008)
SIGIR
, pp. 451-458
-
-
Liu, Y.1
Gao, B.2
Liu, T.Y.3
Zhang, Y.4
Ma, Z.5
He, S.6
Li, H.7
-
16
-
-
84954159636
-
Rt to win! predicting message propagation in twitter
-
Petrovic, S., Osborne, M., Lavrenko, V.: Rt to win! predicting message propagation in twitter. In: 5th ICWSM (2011)
-
(2011)
5th ICWSM
-
-
Petrovic, S.1
Osborne, M.2
Lavrenko, V.3
-
17
-
-
0242456823
-
Mining knowledge-sharing sites for viral marketing
-
Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: SIGKDD, pp. 61-70 (2002)
-
(2002)
SIGKDD
, pp. 61-70
-
-
Richardson, M.1
Domingos, P.2
-
19
-
-
78049231434
-
Efficient estimation of cumulative influence for multiple activation information diffusion model with continuous time delay
-
Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. Springer, Heidelberg
-
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Efficient estimation of cumulative influence for multiple activation information diffusion model with continuous time delay. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS, vol. 6230, pp. 244-255. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.6230
, pp. 244-255
-
-
Saito, K.1
Kimura, M.2
Ohara, K.3
Motoda, H.4
-
20
-
-
84875854513
-
Generative models of information diffusion with asynchronous timedelay
-
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Generative models of information diffusion with asynchronous timedelay. JMLR - Proceedings Track 13, 193-208 (2010)
-
(2010)
JMLR - Proceedings Track
, vol.13
, pp. 193-208
-
-
Saito, K.1
Kimura, M.2
Ohara, K.3
Motoda, H.4
-
21
-
-
35348842925
-
Information flow modeling based on diffusion rate for prediction and ranking
-
Song, X., Chi, Y., Hino, K., Tseng, B.L.: Information flow modeling based on diffusion rate for prediction and ranking. In: WWW, pp. 191-200 (2007)
-
(2007)
WWW
, pp. 191-200
-
-
Song, X.1
Chi, Y.2
Hino, K.3
Tseng, B.L.4
-
22
-
-
33750374555
-
Personalized recommendation driven by information flow
-
Song, X., Tseng, B.L., Lin, C.-Y., Sun, M.-T.: Personalized recommendation driven by information flow. In: SIGIR, pp. 509-516 (2006)
-
(2006)
SIGIR
, pp. 509-516
-
-
Song, X.1
Tseng, B.L.2
Lin, C.-Y.3
Sun, M.-T.4
-
24
-
-
77950897279
-
Twitterrank: Finding topic-sensitive influential twitterers
-
Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: WSDM, pp. 261-270 (2010)
-
(2010)
WSDM
, pp. 261-270
-
-
Weng, J.1
Lim, E.P.2
Jiang, J.3
He, Q.4
|