-
1
-
-
0010295721
-
Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme
-
Zhang F., Pérez-Garcia V.M., and Vázquez L. Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177
-
(1995)
Appl. Math. Comput.
, vol.71
, pp. 165-177
-
-
Zhang, F.1
Pérez-Garcia, V.M.2
Vázquez, L.3
-
2
-
-
84965060858
-
Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation
-
Li S., and Vu-Quoc L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32 (1995) 1839-1875
-
(1995)
SIAM J. Numer. Anal.
, vol.32
, pp. 1839-1875
-
-
Li, S.1
Vu-Quoc, L.2
-
3
-
-
44649190559
-
Dissipative/conservative Galerkin method using discrete derivatives for nonlinear evolutions
-
Matsuo T. Dissipative/conservative Galerkin method using discrete derivatives for nonlinear evolutions. J. Comput. Appl. Math. 218 1 (2008) 506-521
-
(2008)
J. Comput. Appl. Math.
, vol.218
, Issue.1
, pp. 506-521
-
-
Matsuo, T.1
-
4
-
-
84968490649
-
Finite difference method for the generalized Zakharov equations
-
Chang Q., Guo B., and Jiang H. Finite difference method for the generalized Zakharov equations. Math. Comput. 64 (1995) 537-553
-
(1995)
Math. Comput.
, vol.64
, pp. 537-553
-
-
Chang, Q.1
Guo, B.2
Jiang, H.3
-
5
-
-
0037336855
-
High order schemes for conservative or dissipative systems
-
Matsuo T. High order schemes for conservative or dissipative systems. J. Comput. Appl. Math. 152 (2003) 305-317
-
(2003)
J. Comput. Appl. Math.
, vol.152
, pp. 305-317
-
-
Matsuo, T.1
-
6
-
-
34247344152
-
Conservative difference methods for the Klein-Gordon-Zakharov equations
-
Wang T., Chen J., and Zhang L. Conservative difference methods for the Klein-Gordon-Zakharov equations. J. Comput. Appl. Math. 205 (2007) 430-452
-
(2007)
J. Comput. Appl. Math.
, vol.205
, pp. 430-452
-
-
Wang, T.1
Chen, J.2
Zhang, L.3
-
7
-
-
0041520666
-
A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator
-
Zhang L. A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 145 (2003) 603-612
-
(2003)
Appl. Math. Comput.
, vol.145
, pp. 603-612
-
-
Zhang, L.1
-
8
-
-
0035449128
-
Finite-difference schemes for nonlinear wave equation that inherit energy conservation property
-
Furihata D. Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134 (2001) 37-57
-
(2001)
J. Comput. Appl. Math.
, vol.134
, pp. 37-57
-
-
Furihata, D.1
-
9
-
-
33847365291
-
New conservative schemes with discrete variational derivatives for nonlinear wave equations
-
Matsuo T. New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203 (2007) 32-56
-
(2007)
J. Comput. Appl. Math.
, vol.203
, pp. 32-56
-
-
Matsuo, T.1
-
10
-
-
84971897259
-
Symplectic integrators for Hamiltonian problems: An overview
-
Sanz-Serna J.M. Symplectic integrators for Hamiltonian problems: An overview. Acta Numer. 1 (1992) 243-286
-
(1992)
Acta Numer.
, vol.1
, pp. 243-286
-
-
Sanz-Serna, J.M.1
-
11
-
-
0037400145
-
Multi-symplectic integration methods for Hamiltonian PDEs
-
Moore B.E., and Reich S. Multi-symplectic integration methods for Hamiltonian PDEs. Future Generation Computer Systems 19 (2003) 395-402
-
(2003)
Future Generation Computer Systems
, vol.19
, pp. 395-402
-
-
Moore, B.E.1
Reich, S.2
-
12
-
-
3242702916
-
On the preservation of phase space structure under multisymplectic discretization
-
Islas A.L., and Schober C.M. On the preservation of phase space structure under multisymplectic discretization. J. Comput. Phys. 197 (2004) 585-609
-
(2004)
J. Comput. Phys.
, vol.197
, pp. 585-609
-
-
Islas, A.L.1
Schober, C.M.2
-
13
-
-
0003034563
-
The symplectic methods for computation of Hamiltonian systems
-
Proc. Conf. on Numerical Methods for PDEs. Zhu Y.L., and Guo B.-Y. (Eds), Springer, Berlin
-
Feng K., and Qin M.Z. The symplectic methods for computation of Hamiltonian systems. In: Zhu Y.L., and Guo B.-Y. (Eds). Proc. Conf. on Numerical Methods for PDEs. Lecture Notes in Math vol. 1297 (1987), Springer, Berlin 1-37
-
(1987)
Lecture Notes in Math
, vol.1297
, pp. 1-37
-
-
Feng, K.1
Qin, M.Z.2
-
14
-
-
0003079278
-
Construction of symplectic schemes for wave equation via hyperbolic function sinh(x), cosh(x) and tanh(x)
-
Qin M.Z., and Zhu W.J. Construction of symplectic schemes for wave equation via hyperbolic function sinh(x), cosh(x) and tanh(x). Comput. Math. Appl. 26 (1993) 1-11
-
(1993)
Comput. Math. Appl.
, vol.26
, pp. 1-11
-
-
Qin, M.Z.1
Zhu, W.J.2
-
16
-
-
0036558975
-
Symplectic computation of Hamiltonian systems (I)
-
Tang Y.F. Symplectic computation of Hamiltonian systems (I). J. Comput. Math. 20 (2002) 267-276
-
(2002)
J. Comput. Math.
, vol.20
, pp. 267-276
-
-
Tang, Y.F.1
-
17
-
-
0142216144
-
Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system
-
Sun J.-Q., and Qin M.-Z. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Commun. 155 (2003) 221-235
-
(2003)
Comput. Phys. Commun.
, vol.155
, pp. 221-235
-
-
Sun, J.-Q.1
Qin, M.-Z.2
-
18
-
-
33645456610
-
Multisymplectic difference schemes for coupled nonlinear Schrödinger system
-
Sun J.-q., Gu X.-y., and Ma Z.-q. Multisymplectic difference schemes for coupled nonlinear Schrödinger system. Chin. J. Comput. Phys. 21 (2004) 321-328
-
(2004)
Chin. J. Comput. Phys.
, vol.21
, pp. 321-328
-
-
Sun, J.-q.1
Gu, X.-y.2
Ma, Z.-q.3
-
19
-
-
23144432839
-
Strong coupling of Schrödinger equations: Conservative scheme approach
-
Sonnier W.J., and Christov C.I. Strong coupling of Schrödinger equations: Conservative scheme approach. Math. Comput. Simulation 69 (2005) 514-525
-
(2005)
Math. Comput. Simulation
, vol.69
, pp. 514-525
-
-
Sonnier, W.J.1
Christov, C.I.2
-
20
-
-
0034920816
-
Numerical simulation of coupled nonlinear Schrödinger equation
-
Ismail M.S., and Taha T.R. Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simulation 56 (2001) 547-562
-
(2001)
Math. Comput. Simulation
, vol.56
, pp. 547-562
-
-
Ismail, M.S.1
Taha, T.R.2
-
21
-
-
28244501835
-
Highly accurate finite difference method for coupled nonlinear Schrödinger equation
-
Ismail M.S., and Alamri S.Z. Highly accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81 (2004) 333-351
-
(2004)
Int. J. Comput. Math.
, vol.81
, pp. 333-351
-
-
Ismail, M.S.1
Alamri, S.Z.2
-
22
-
-
33847107061
-
A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation
-
Ismail M.S., and Taha T.R. A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simulation 74 (2007) 302-311
-
(2007)
Math. Comput. Simulation
, vol.74
, pp. 302-311
-
-
Ismail, M.S.1
Taha, T.R.2
-
23
-
-
41949085035
-
Numerical approximation for a coupled Schrödinger system
-
Wang T., Zhang L., and Chen F. Numerical approximation for a coupled Schrödinger system. Chinese J. Comput. Phys. 25 (2008) 179-185
-
(2008)
Chinese J. Comput. Phys.
, vol.25
, pp. 179-185
-
-
Wang, T.1
Zhang, L.2
Chen, F.3
-
26
-
-
0040374231
-
Existence and uniqueness theorems for solutions of nonlinear boundary value problems
-
Application of Nonlinear Partial Differential Equations. Finn R. (Ed), AMS, Providence
-
Browder F.E. Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Application of Nonlinear Partial Differential Equations. In: Finn R. (Ed). Proceedings of Symposia in Applied Mathematics vol. 17 (1965), AMS, Providence 24-49
-
(1965)
Proceedings of Symposia in Applied Mathematics
, vol.17
, pp. 24-49
-
-
Browder, F.E.1
-
27
-
-
2442538708
-
The convergence of numerical method for nonlinear Schrödinger equations
-
Guo B. The convergence of numerical method for nonlinear Schrödinger equations. J. Comput. Math. 4 (1986) 121-130
-
(1986)
J. Comput. Math.
, vol.4
, pp. 121-130
-
-
Guo, B.1
-
28
-
-
0034384129
-
The numerical integration of relative solitons. The nonlinear Schrödinger equation
-
Durán A., and Sanz-Serna J.M. The numerical integration of relative solitons. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20 (2000) 235-261
-
(2000)
IMA J. Numer. Anal.
, vol.20
, pp. 235-261
-
-
Durán, A.1
Sanz-Serna, J.M.2
|