메뉴 건너뛰기




Volumn 231, Issue 2, 2009, Pages 745-759

Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system

Author keywords

Convergence; Coupled nonlinear Schr dinger equations; Iterative algorithm; Solvability; Symplectic scheme

Indexed keywords

CONVERGENCE; CONVERGENCE AND STABILITY; DIFFERENCE SCHEMES; INITIAL-BOUNDARY VALUE PROBLEMS; ITERATIVE ALGORITHM; NUMERICAL EXAMPLE; NUMERICAL SOLUTION; SOLVABILITY; SYMPLECTIC; SYMPLECTIC SCHEME;

EID: 67949117124     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2009.04.022     Document Type: Article
Times cited : (27)

References (28)
  • 1
    • 0010295721 scopus 로고
    • Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme
    • Zhang F., Pérez-Garcia V.M., and Vázquez L. Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177
    • (1995) Appl. Math. Comput. , vol.71 , pp. 165-177
    • Zhang, F.1    Pérez-Garcia, V.M.2    Vázquez, L.3
  • 2
    • 84965060858 scopus 로고
    • Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation
    • Li S., and Vu-Quoc L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32 (1995) 1839-1875
    • (1995) SIAM J. Numer. Anal. , vol.32 , pp. 1839-1875
    • Li, S.1    Vu-Quoc, L.2
  • 3
    • 44649190559 scopus 로고    scopus 로고
    • Dissipative/conservative Galerkin method using discrete derivatives for nonlinear evolutions
    • Matsuo T. Dissipative/conservative Galerkin method using discrete derivatives for nonlinear evolutions. J. Comput. Appl. Math. 218 1 (2008) 506-521
    • (2008) J. Comput. Appl. Math. , vol.218 , Issue.1 , pp. 506-521
    • Matsuo, T.1
  • 4
    • 84968490649 scopus 로고
    • Finite difference method for the generalized Zakharov equations
    • Chang Q., Guo B., and Jiang H. Finite difference method for the generalized Zakharov equations. Math. Comput. 64 (1995) 537-553
    • (1995) Math. Comput. , vol.64 , pp. 537-553
    • Chang, Q.1    Guo, B.2    Jiang, H.3
  • 5
    • 0037336855 scopus 로고    scopus 로고
    • High order schemes for conservative or dissipative systems
    • Matsuo T. High order schemes for conservative or dissipative systems. J. Comput. Appl. Math. 152 (2003) 305-317
    • (2003) J. Comput. Appl. Math. , vol.152 , pp. 305-317
    • Matsuo, T.1
  • 6
    • 34247344152 scopus 로고    scopus 로고
    • Conservative difference methods for the Klein-Gordon-Zakharov equations
    • Wang T., Chen J., and Zhang L. Conservative difference methods for the Klein-Gordon-Zakharov equations. J. Comput. Appl. Math. 205 (2007) 430-452
    • (2007) J. Comput. Appl. Math. , vol.205 , pp. 430-452
    • Wang, T.1    Chen, J.2    Zhang, L.3
  • 7
    • 0041520666 scopus 로고    scopus 로고
    • A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator
    • Zhang L. A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 145 (2003) 603-612
    • (2003) Appl. Math. Comput. , vol.145 , pp. 603-612
    • Zhang, L.1
  • 8
    • 0035449128 scopus 로고    scopus 로고
    • Finite-difference schemes for nonlinear wave equation that inherit energy conservation property
    • Furihata D. Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134 (2001) 37-57
    • (2001) J. Comput. Appl. Math. , vol.134 , pp. 37-57
    • Furihata, D.1
  • 9
    • 33847365291 scopus 로고    scopus 로고
    • New conservative schemes with discrete variational derivatives for nonlinear wave equations
    • Matsuo T. New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203 (2007) 32-56
    • (2007) J. Comput. Appl. Math. , vol.203 , pp. 32-56
    • Matsuo, T.1
  • 10
    • 84971897259 scopus 로고
    • Symplectic integrators for Hamiltonian problems: An overview
    • Sanz-Serna J.M. Symplectic integrators for Hamiltonian problems: An overview. Acta Numer. 1 (1992) 243-286
    • (1992) Acta Numer. , vol.1 , pp. 243-286
    • Sanz-Serna, J.M.1
  • 11
    • 0037400145 scopus 로고    scopus 로고
    • Multi-symplectic integration methods for Hamiltonian PDEs
    • Moore B.E., and Reich S. Multi-symplectic integration methods for Hamiltonian PDEs. Future Generation Computer Systems 19 (2003) 395-402
    • (2003) Future Generation Computer Systems , vol.19 , pp. 395-402
    • Moore, B.E.1    Reich, S.2
  • 12
    • 3242702916 scopus 로고    scopus 로고
    • On the preservation of phase space structure under multisymplectic discretization
    • Islas A.L., and Schober C.M. On the preservation of phase space structure under multisymplectic discretization. J. Comput. Phys. 197 (2004) 585-609
    • (2004) J. Comput. Phys. , vol.197 , pp. 585-609
    • Islas, A.L.1    Schober, C.M.2
  • 13
    • 0003034563 scopus 로고
    • The symplectic methods for computation of Hamiltonian systems
    • Proc. Conf. on Numerical Methods for PDEs. Zhu Y.L., and Guo B.-Y. (Eds), Springer, Berlin
    • Feng K., and Qin M.Z. The symplectic methods for computation of Hamiltonian systems. In: Zhu Y.L., and Guo B.-Y. (Eds). Proc. Conf. on Numerical Methods for PDEs. Lecture Notes in Math vol. 1297 (1987), Springer, Berlin 1-37
    • (1987) Lecture Notes in Math , vol.1297 , pp. 1-37
    • Feng, K.1    Qin, M.Z.2
  • 14
    • 0003079278 scopus 로고
    • Construction of symplectic schemes for wave equation via hyperbolic function sinh(x), cosh(x) and tanh(x)
    • Qin M.Z., and Zhu W.J. Construction of symplectic schemes for wave equation via hyperbolic function sinh(x), cosh(x) and tanh(x). Comput. Math. Appl. 26 (1993) 1-11
    • (1993) Comput. Math. Appl. , vol.26 , pp. 1-11
    • Qin, M.Z.1    Zhu, W.J.2
  • 16
    • 0036558975 scopus 로고    scopus 로고
    • Symplectic computation of Hamiltonian systems (I)
    • Tang Y.F. Symplectic computation of Hamiltonian systems (I). J. Comput. Math. 20 (2002) 267-276
    • (2002) J. Comput. Math. , vol.20 , pp. 267-276
    • Tang, Y.F.1
  • 17
    • 0142216144 scopus 로고    scopus 로고
    • Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system
    • Sun J.-Q., and Qin M.-Z. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system. Comput. Phys. Commun. 155 (2003) 221-235
    • (2003) Comput. Phys. Commun. , vol.155 , pp. 221-235
    • Sun, J.-Q.1    Qin, M.-Z.2
  • 18
    • 33645456610 scopus 로고    scopus 로고
    • Multisymplectic difference schemes for coupled nonlinear Schrödinger system
    • Sun J.-q., Gu X.-y., and Ma Z.-q. Multisymplectic difference schemes for coupled nonlinear Schrödinger system. Chin. J. Comput. Phys. 21 (2004) 321-328
    • (2004) Chin. J. Comput. Phys. , vol.21 , pp. 321-328
    • Sun, J.-q.1    Gu, X.-y.2    Ma, Z.-q.3
  • 19
    • 23144432839 scopus 로고    scopus 로고
    • Strong coupling of Schrödinger equations: Conservative scheme approach
    • Sonnier W.J., and Christov C.I. Strong coupling of Schrödinger equations: Conservative scheme approach. Math. Comput. Simulation 69 (2005) 514-525
    • (2005) Math. Comput. Simulation , vol.69 , pp. 514-525
    • Sonnier, W.J.1    Christov, C.I.2
  • 20
    • 0034920816 scopus 로고    scopus 로고
    • Numerical simulation of coupled nonlinear Schrödinger equation
    • Ismail M.S., and Taha T.R. Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simulation 56 (2001) 547-562
    • (2001) Math. Comput. Simulation , vol.56 , pp. 547-562
    • Ismail, M.S.1    Taha, T.R.2
  • 21
    • 28244501835 scopus 로고    scopus 로고
    • Highly accurate finite difference method for coupled nonlinear Schrödinger equation
    • Ismail M.S., and Alamri S.Z. Highly accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81 (2004) 333-351
    • (2004) Int. J. Comput. Math. , vol.81 , pp. 333-351
    • Ismail, M.S.1    Alamri, S.Z.2
  • 22
    • 33847107061 scopus 로고    scopus 로고
    • A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation
    • Ismail M.S., and Taha T.R. A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simulation 74 (2007) 302-311
    • (2007) Math. Comput. Simulation , vol.74 , pp. 302-311
    • Ismail, M.S.1    Taha, T.R.2
  • 23
    • 41949085035 scopus 로고    scopus 로고
    • Numerical approximation for a coupled Schrödinger system
    • Wang T., Zhang L., and Chen F. Numerical approximation for a coupled Schrödinger system. Chinese J. Comput. Phys. 25 (2008) 179-185
    • (2008) Chinese J. Comput. Phys. , vol.25 , pp. 179-185
    • Wang, T.1    Zhang, L.2    Chen, F.3
  • 26
    • 0040374231 scopus 로고
    • Existence and uniqueness theorems for solutions of nonlinear boundary value problems
    • Application of Nonlinear Partial Differential Equations. Finn R. (Ed), AMS, Providence
    • Browder F.E. Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Application of Nonlinear Partial Differential Equations. In: Finn R. (Ed). Proceedings of Symposia in Applied Mathematics vol. 17 (1965), AMS, Providence 24-49
    • (1965) Proceedings of Symposia in Applied Mathematics , vol.17 , pp. 24-49
    • Browder, F.E.1
  • 27
    • 2442538708 scopus 로고
    • The convergence of numerical method for nonlinear Schrödinger equations
    • Guo B. The convergence of numerical method for nonlinear Schrödinger equations. J. Comput. Math. 4 (1986) 121-130
    • (1986) J. Comput. Math. , vol.4 , pp. 121-130
    • Guo, B.1
  • 28
    • 0034384129 scopus 로고    scopus 로고
    • The numerical integration of relative solitons. The nonlinear Schrödinger equation
    • Durán A., and Sanz-Serna J.M. The numerical integration of relative solitons. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20 (2000) 235-261
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 235-261
    • Durán, A.1    Sanz-Serna, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.