-
1
-
-
0038188968
-
-
10.1126/science.287.5458.1658
-
B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000). 10.1126/science.287.5458.1658
-
(2000)
Science
, vol.287
, pp. 1658
-
-
Boudaïffa, B.1
Cloutier, P.2
Hunting, D.3
Huels, M.A.4
Sanche, L.5
-
2
-
-
33750605959
-
-
10.1021/ar0680769
-
J. Simons, Acc. Chem. Res. 39, 772 (2006). 10.1021/ar0680769
-
(2006)
Acc. Chem. Res
, vol.39
, pp. 772
-
-
Simons, J.1
-
4
-
-
50149097751
-
-
10.1002/mas.20169
-
R. D. Thomas, Mass Spectrom. Rev. 27, 485 (2008). 10.1002/mas.20169
-
(2008)
Mass Spectrom. Rev
, vol.27
, pp. 485
-
-
Thomas, R.D.1
-
7
-
-
64549096345
-
-
10.1088/0953-4075/42/2/023001
-
R. Santra, J. Phys. B 42, 023001 (2009). 10.1088/0953-4075/42/2/023001
-
(2009)
J. Phys. B
, vol.42
, pp. 023001
-
-
Santra, R.1
-
9
-
-
77949687003
-
-
10.1103/PhysRevLett.104.123901
-
V. Strelkov, Phys. Rev. Lett. 104, 123901 (2010). 10.1103/PhysRevLett. 104.123901
-
(2010)
Phys. Rev. Lett
, vol.104
, pp. 123901
-
-
Strelkov, V.1
-
10
-
-
3042567214
-
-
10.1039/b315763f
-
L. H. Andersen, H. Bluhme, S. Boyé, T. J. D. Jorgensen, H. Krogh, I. B. Nielsen, S. B. Nielsen, and A. Svendsen, Phys. Chem. Chem. Phys. 6, 2617 (2004). 10.1039/b315763f
-
(2004)
Phys. Chem. Chem. Phys
, vol.6
, pp. 2617
-
-
Andersen, L.H.1
Bluhme, H.2
Boyé, S.3
Jorgensen, T.J.D.4
Krogh, H.5
Nielsen, I.B.6
Nielsen, S.B.7
Svendsen, A.8
-
11
-
-
37649031807
-
-
10.1103/PhysRevLett.87.228102
-
S. B. Nielsen, A. Lapierre, J. U. Andersen, U. V. Pedersen, S. Tomita, and L. H. Andersen, Phys. Rev. Lett. 87, 228102 (2001). 10.1103/PhysRevLett.87. 228102
-
(2001)
Phys. Rev. Lett
, vol.87
, pp. 228102
-
-
Nielsen, S.B.1
Lapierre, A.2
Andersen, J.U.3
Pedersen, U.V.4
Tomita, S.5
Andersen, L.H.6
-
13
-
-
67849092316
-
-
10.1021/ct900143j
-
E. Epifanovsky, I. Polyakov, B. L. Grigorenko, A. V. Nemukhin, and A. I. Krylov, J. Chem. Theory Comput. 5, 1895 (2009). 10.1021/ct900143j
-
(2009)
J. Chem. Theory Comput
, vol.5
, pp. 1895
-
-
Epifanovsky, E.1
Polyakov, I.2
Grigorenko, B.L.3
Nemukhin, A.V.4
Krylov, A.I.5
-
14
-
-
79551628234
-
-
10.1063/1.3516211
-
D. Zuev, K. B. Bravaya, T. D. Crawford, R. Lindh, and A. I. Krylov, J. Chem. Phys. 134, 034310 (2011). 10.1063/1.3516211
-
(2011)
J. Chem. Phys
, vol.134
, pp. 034310
-
-
Zuev, D.1
Bravaya, K.B.2
Crawford, T.D.3
Lindh, R.4
Krylov, A.I.5
-
15
-
-
20344369297
-
-
10.1021/jp0447791
-
E. V. Gromov, I. Burghardt, H. Köppel, and L. S. Cederbaum, J. Phys. Chem. A 109, 4623 (2005). 10.1021/jp0447791
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 4623
-
-
Gromov, E.V.1
Burghardt, I.2
Köppel, H.3
Cederbaum, L.S.4
-
16
-
-
0000238454
-
-
10.1021/jp992615s
-
Z. He, C. H. Martin, R. Birge, and K. F. Freed, J. Phys. Chem. A 104, 2939 (2000). 10.1021/jp992615s
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 2939
-
-
He, Z.1
Martin, C.H.2
Birge, R.3
Freed, K.F.4
-
17
-
-
0001563377
-
-
10.1146/annurev.pc.33.100182.001255
-
W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982). 10.1146/annurev.pc.33.100182.001255
-
(1982)
Annu. Rev. Phys. Chem
, vol.33
, pp. 223
-
-
Reinhardt, W.P.1
-
18
-
-
0001023340
-
-
10.1016/S0370-1573(98)00002-7
-
N. Moiseyev, Phys. Rep. 302, 212 (1998). 10.1016/S0370-1573(98)00002-7
-
(1998)
Phys. Rep
, vol.302
, pp. 212
-
-
Moiseyev, N.1
-
20
-
-
84875788611
-
-
A shape resonance (often called an open-channel resonance) is associated with the shape of potential curve that has a barrier along the decay coordinate, such as, for example, a particle that can tunnel through a centrifugal barrier. In this case the shape of the barrier controls the lifetime of the system. Shape resonances are purely quantum-mechanical phenomena; they become bound states in the semi-classical limit as → 0. Feshbach-type resonances arise due to the coupling of a bound state with the continuum via other degrees of freedom. Such resonances can be described classically
-
A shape resonance (often called an open-channel resonance) is associated with the shape of potential curve that has a barrier along the decay coordinate, such as, for example, a particle that can tunnel through a centrifugal barrier. In this case the shape of the barrier controls the lifetime of the system. Shape resonances are purely quantum-mechanical phenomena; they become bound states in the semi-classical limit as → 0. Feshbach-type resonances arise due to the coupling of a bound state with the continuum via other degrees of freedom. Such resonances can be described classically
-
-
-
-
21
-
-
84857186567
-
On resonance: A first glance in the behavior of unstable states
-
in, edited by C. A. Nicolaides, J. R. Sabin, and E. J. Brändas (Elsevier Inc.), Vol., Cha 1
-
S. Klaiman and I. Gilary, On resonance: A first glance in the behavior of unstable states., in Advances in Quantum Chemistry, edited by, C. A. Nicolaides, J. R. Sabin, and, E. J. Brändas, (Elsevier Inc., 2012), Vol. 63, Chap. 1, pp. 1-31
-
(2012)
Advances in Quantum Chemistry
, vol.63
, pp. 1-31
-
-
Klaiman, S.1
Gilary, I.2
-
22
-
-
84875764958
-
-
It can be easily shown that in a CIS calculation the onset of the ionization continuum is exactly at Koopmans ionization energy (see, for example, Ref.). Likewise, in time-dependent density functional calculations (when using Tamm-Dancof approximation), the continuum states converge to the Kohn-Sham orbital energies (which may differ considerably from the ΔE values of ionization energies computed using the same functional). In EOM-CC calculations of excitation energies, the continuum begins at the respective EOM-IP-CC value (EOM-CC for ionization potentials). Thus, it is straightforward to determine whether an excited state is a resonance or not at a particular level of theory when employing these methods. No similar statement can be made for multi-reference methods
-
It can be easily shown that in a CIS calculation the onset of the ionization continuum is exactly at Koopmans ionization energy (see, for example, Ref.). Likewise, in time-dependent density functional calculations (when using Tamm-Dancof approximation), the continuum states converge to the Kohn-Sham orbital energies (which may differ considerably from the ΔE values of ionization energies computed using the same functional). In EOM-CC calculations of excitation energies, the continuum begins at the respective EOM-IP-CC value (EOM-CC for ionization potentials). Thus, it is straightforward to determine whether an excited state is a resonance or not at a particular level of theory when employing these methods. No similar statement can be made for multi-reference methods
-
-
-
-
23
-
-
0000610217
-
-
10.1063/1.461708
-
D. Neuhauser, J. Chem. Phys. 95, 4927 (1991). 10.1063/1.461708
-
(1991)
J. Chem. Phys
, vol.95
, pp. 4927
-
-
Neuhauser, D.1
-
24
-
-
33845557068
-
-
10.1021/ar00072a002
-
E. J. Heller, Acc. Chem. Res. 14, 368 (1981). 10.1021/ar00072a002
-
(1981)
Acc. Chem. Res
, vol.14
, pp. 368
-
-
Heller, E.J.1
-
25
-
-
0030588866
-
-
10.1016/0009-2614(96)01110-4
-
F. Grossmann, Chem. Phys. Lett. 262, 470 (1996). 10.1016/0009-2614(96) 01110-4
-
(1996)
Chem. Phys. Lett
, vol.262
, pp. 470
-
-
Grossmann, F.1
-
26
-
-
0000603433
-
-
10.1103/PhysRevA.1.1109
-
A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109 (1970). 10.1103/PhysRevA.1.1109
-
(1970)
Phys. Rev. A
, vol.1
, pp. 1109
-
-
Hazi, A.U.1
Taylor, H.S.2
-
29
-
-
0002382944
-
Stieltjes-Tchebycheff moment-theory approach to molecular photoionization studies
-
in, edited by V. McKoy, T. Rescigno, and B. Schneider (Plenum, New York)
-
P. W. Langhoff, Stieltjes-Tchebycheff moment-theory approach to molecular photoionization studies., in Electron Molecule and Photon Molecule Collisions, edited by, V. McKoy, T. Rescigno, and, B. Schneider, (Plenum, New York, 1979), pp. 183-224
-
(1979)
Electron Molecule and Photon Molecule Collisions
, pp. 183-224
-
-
Langhoff, P.W.1
-
30
-
-
84857165689
-
Quasi-bound states of electronic and positronic few-body systems: Analysis of multichannel scattering information
-
(Elsevier Inc.)
-
I. Shimamura, Quasi-bound states of electronic and positronic few-body systems: Analysis of multichannel scattering information., in Advances in Quantum Chemistry (Elsevier Inc., 2012), Vol. 63, pp. 165-245
-
(2012)
Advances in Quantum Chemistry
, vol.63
, pp. 165-245
-
-
Shimamura, I.1
-
33
-
-
0001773496
-
-
10.1007/BF01649654
-
B. Simon, Commun. Math. Phys. 27, 1 (1972). 10.1007/BF01649654
-
(1972)
Commun. Math. Phys
, vol.27
, pp. 1
-
-
Simon, B.1
-
35
-
-
0027719622
-
-
10.1088/0953-4075/26/23/021
-
U. V. Riss and H.-D. Meyer, J. Phys. B 26, 4503 (1993). 10.1088/0953-4075/26/23/021
-
(1993)
J. Phys. B
, vol.26
, pp. 4503
-
-
Riss, U.V.1
Meyer, H.-D.2
-
37
-
-
4243194482
-
-
10.1016/0370-1573(91)90125-6
-
W. Domcke, Phys. Reports 208, 97 (1991). 10.1016/0370-1573(91)90125-6
-
(1991)
Phys. Reports
, vol.208
, pp. 97
-
-
Domcke, W.1
-
38
-
-
33747835834
-
-
10.1016/0003-4916(62)90221-X
-
H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962). 10.1016/0003-4916(62) 90221-X
-
(1962)
Ann. Phys. (N.Y.)
, vol.19
, pp. 287
-
-
Feshbach, H.1
-
40
-
-
84868283066
-
-
10.1088/0953-4075/28/8/012
-
U. V. Riss and H.-D. Meyer, J. Phys. B 28, 1475 (1995). 10.1088/0953-4075/28/8/012
-
(1995)
J. Phys. B
, vol.28
, pp. 1475
-
-
Riss, U.V.1
Meyer, H.-D.2
-
47
-
-
84861841913
-
-
10.1080/00268976.2012.659225
-
S. B. Zhang and D. L. Yeager, Mol. Phys. 110, 663 (2012). 10.1080/00268976.2012.659225
-
(2012)
Mol. Phys
, vol.110
, pp. 663
-
-
Zhang, S.B.1
Yeager, D.L.2
-
49
-
-
33749512164
-
-
10.1016/j.chemphys.2006.07.002
-
S. Pal, Y. Sajeev, and N. Vaval, Chem. Phys. 329, 283 (2006). 10.1016/j.chemphys.2006.07.002
-
(2006)
Chem. Phys
, vol.329
, pp. 283
-
-
Pal, S.1
Sajeev, Y.2
Vaval, N.3
-
51
-
-
36749104613
-
-
10.1063/1.440522
-
C. W. McCurdy, T. N. Rescigno, E. R. Davidson, and J. G. Lauderdale, J. Chem. Phys. 73, 3268 (1980). 10.1063/1.440522
-
(1980)
J. Chem. Phys
, vol.73
, pp. 3268
-
-
McCurdy, C.W.1
Rescigno, T.N.2
Davidson, E.R.3
Lauderdale, J.G.4
-
52
-
-
77956850831
-
-
10.1016/S0065-2199(08)60242-0
-
B. R. Junker, Adv. At. Mol. Phys 18, 207 (1982). 10.1016/S0065-2199(08) 60242-0
-
(1982)
Adv. At. Mol. Phys
, vol.18
, pp. 207
-
-
Junker, B.R.1
-
53
-
-
84875778519
-
-
Here, the non-complex-scaled HF reference is assumed. If the complex-scaled HF is employed molecular orbitals are no longer real. In this case an integral transformation routine has to be modified accounting for the transformation from integrals computed in the real AO basis to the basis of complex MO
-
Here, the non-complex-scaled HF reference is assumed. If the complex-scaled HF is employed molecular orbitals are no longer real. In this case an integral transformation routine has to be modified accounting for the transformation from integrals computed in the real AO basis to the basis of complex MO
-
-
-
-
54
-
-
84875791541
-
-
See supplementary material at E-JCPSA6-138-056312 for additional details
-
See supplementary material at http://dx.doi.org/10.1063/1.4795750 E-JCPSA6-138-056312 for additional details
-
-
-
-
56
-
-
37549014315
-
-
10.1146/annurev.physchem.59.032607.093602
-
A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008). 10.1146/annurev. physchem.59.032607.093602
-
(2008)
Annu. Rev. Phys. Chem
, vol.59
, pp. 433
-
-
Krylov, A.I.1
-
58
-
-
0011510324
-
-
(American Chemical Society)
-
C. W. McCurdy, ACS Symposium Series (American Chemical Society, 1984), Vol. 263, pp. 17-34
-
(1984)
ACS Symposium Series
, vol.263
, pp. 17-34
-
-
McCurdy, C.W.1
-
68
-
-
5344230920
-
-
10.1016/0021-9991(75)90065-0
-
E. R. Davidson, J. Comput. Phys. 17, 87 (1975). 10.1016/0021-9991(75) 90065-0
-
(1975)
J. Comput. Phys
, vol.17
, pp. 87
-
-
Davidson, E.R.1
-
69
-
-
0002669014
-
-
10.1016/0021-9991(82)90104-8
-
S. Rettrup, J. Comput. Phys. 45, 100 (1982). 10.1016/0021-9991(82)90104-8
-
(1982)
J. Comput. Phys
, vol.45
, pp. 100
-
-
Rettrup, S.1
-
70
-
-
0000894889
-
-
10.1016/0021-9991(82)90119-X
-
K. Hirao and H. Nakatsuji, J. Comput. Phys. 45, 246 (1982). 10.1016/0021-9991(82)90119-X
-
(1982)
J. Comput. Phys
, vol.45
, pp. 246
-
-
Hirao, K.1
Nakatsuji, H.2
-
72
-
-
84875760987
-
-
New implementation of high-level correlated methods using a general block-tensor library for high-performance electronic structure calculations
-
E. Epifanovsky, M. Wormit, T. Kuś, A. Landau, D. Zuev, K. Khistyaev, I. Kaliman, P. Manohar, A. Dreuw, and A. I. Krylov, New implementation of high-level correlated methods using a general block-tensor library for high-performance electronic structure calculations, http://iopenshell.usc.edu/downloads/tensor/, 2011
-
(2011)
-
-
Epifanovsky, E.1
Wormit, M.2
Kuś, T.3
Landau, A.4
Zuev, D.5
Khistyaev, K.6
Kaliman, I.7
Manohar, P.8
Dreuw, A.9
Krylov, A.I.10
-
73
-
-
84875770099
-
New implementation of high-level correlated methods using a general block-tensor library for high-performance electronic structure calculations
-
(submitted)
-
E. Epifanovsky, M. Wormit, T. Kuś, A. Landau, D. Zuev, K. Khistyaev, P. Manohar, I. Kaliman, A. Dreuw, and A. I. Krylov, New implementation of high-level correlated methods using a general block-tensor library for high-performance electronic structure calculations., J. Comput. Chem. (submitted)
-
J. Comput. Chem.
-
-
Epifanovsky, E.1
Wormit, M.2
Kuś, T.3
Landau, A.4
Zuev, D.5
Khistyaev, K.6
Manohar, P.7
Kaliman, I.8
Dreuw, A.9
Krylov, A.I.10
-
74
-
-
4243447072
-
-
10.1103/PhysRevA.23.2137
-
Y. K. Ho, Phys. Rev. A 23, 2137 (1981). 10.1103/PhysRevA.23.2137
-
(1981)
Phys. Rev. A
, vol.23
, pp. 2137
-
-
Ho, Y.K.1
-
77
-
-
0036532183
-
-
10.1016/S0010-4655(02)00141-8
-
A. Faure, J. D. Gorfinkiel, L. A. Morgan, and J. Tennyson, Comput. Phys. Commun. 144, 224 (2002). 10.1016/S0010-4655(02)00141-8
-
(2002)
Comput. Phys. Commun
, vol.144
, pp. 224
-
-
Faure, A.1
Gorfinkiel, J.D.2
Morgan, L.A.3
Tennyson, J.4
-
78
-
-
84875786129
-
-
The discussion of the physical interpretation of the complex electronic density for resonances can be found in Refs.. Barkay and Moiseyev showed that the phase of the complex density probability is related to the resonant tunneling probability
-
The discussion of the physical interpretation of the complex electronic density for resonances can be found in Refs.. Barkay and Moiseyev showed that the phase of the complex density probability is related to the resonant tunneling probability
-
-
-
-
79
-
-
84875800363
-
-
When electrons cannot avoid each other angularly, they try to do it radially which results in a more diffuse wave function
-
When electrons cannot avoid each other angularly, they try to do it radially which results in a more diffuse wave function
-
-
-
-
81
-
-
0035471915
-
-
10.1103/PhysRevA.64.044702
-
H. Barkay and N. Moiseyev, Phys. Rev. A 64, 044702 (2001). 10.1103/PhysRevA.64.044702
-
(2001)
Phys. Rev. A
, vol.64
, pp. 044702
-
-
Barkay, H.1
Moiseyev, N.2
|