메뉴 건너뛰기




Volumn 138, Issue 12, 2013, Pages

Complex-scaled equation-of-motion coupled-cluster method with single and double substitutions for autoionizing excited states: Theory, implementation, and examples

Author keywords

[No Author keywords available]

Indexed keywords

DOUBLE SUBSTITUTION; ELECTRON EJECTION; ENERGY DECOMPOSITION; EQUATION OF MOTION COUPLED CLUSTERS; FESHBACH RESONANCES; FUNCTION ANALYSIS; ONE-ELECTRON BASIS; SCALING PARAMETER;

EID: 84875792856     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4795750     Document Type: Article
Times cited : (74)

References (86)
  • 2
    • 33750605959 scopus 로고    scopus 로고
    • 10.1021/ar0680769
    • J. Simons, Acc. Chem. Res. 39, 772 (2006). 10.1021/ar0680769
    • (2006) Acc. Chem. Res , vol.39 , pp. 772
    • Simons, J.1
  • 4
  • 5
    • 2342449336 scopus 로고    scopus 로고
    • 10.1021/cr0206667
    • C. Bressler and M. Chergui, Chem. Rev. 104, 1781 (2004). 10.1021/cr0206667
    • (2004) Chem. Rev , vol.104 , pp. 1781
    • Bressler, C.1    Chergui, M.2
  • 7
    • 64549096345 scopus 로고    scopus 로고
    • 10.1088/0953-4075/42/2/023001
    • R. Santra, J. Phys. B 42, 023001 (2009). 10.1088/0953-4075/42/2/023001
    • (2009) J. Phys. B , vol.42 , pp. 023001
    • Santra, R.1
  • 8
  • 9
    • 77949687003 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.104.123901
    • V. Strelkov, Phys. Rev. Lett. 104, 123901 (2010). 10.1103/PhysRevLett. 104.123901
    • (2010) Phys. Rev. Lett , vol.104 , pp. 123901
    • Strelkov, V.1
  • 17
    • 0001563377 scopus 로고
    • 10.1146/annurev.pc.33.100182.001255
    • W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982). 10.1146/annurev.pc.33.100182.001255
    • (1982) Annu. Rev. Phys. Chem , vol.33 , pp. 223
    • Reinhardt, W.P.1
  • 18
    • 0001023340 scopus 로고    scopus 로고
    • 10.1016/S0370-1573(98)00002-7
    • N. Moiseyev, Phys. Rep. 302, 212 (1998). 10.1016/S0370-1573(98)00002-7
    • (1998) Phys. Rep , vol.302 , pp. 212
    • Moiseyev, N.1
  • 20
    • 84875788611 scopus 로고    scopus 로고
    • A shape resonance (often called an open-channel resonance) is associated with the shape of potential curve that has a barrier along the decay coordinate, such as, for example, a particle that can tunnel through a centrifugal barrier. In this case the shape of the barrier controls the lifetime of the system. Shape resonances are purely quantum-mechanical phenomena; they become bound states in the semi-classical limit as → 0. Feshbach-type resonances arise due to the coupling of a bound state with the continuum via other degrees of freedom. Such resonances can be described classically
    • A shape resonance (often called an open-channel resonance) is associated with the shape of potential curve that has a barrier along the decay coordinate, such as, for example, a particle that can tunnel through a centrifugal barrier. In this case the shape of the barrier controls the lifetime of the system. Shape resonances are purely quantum-mechanical phenomena; they become bound states in the semi-classical limit as → 0. Feshbach-type resonances arise due to the coupling of a bound state with the continuum via other degrees of freedom. Such resonances can be described classically
  • 21
    • 84857186567 scopus 로고    scopus 로고
    • On resonance: A first glance in the behavior of unstable states
    • in, edited by C. A. Nicolaides, J. R. Sabin, and E. J. Brändas (Elsevier Inc.), Vol., Cha 1
    • S. Klaiman and I. Gilary, On resonance: A first glance in the behavior of unstable states., in Advances in Quantum Chemistry, edited by, C. A. Nicolaides, J. R. Sabin, and, E. J. Brändas, (Elsevier Inc., 2012), Vol. 63, Chap. 1, pp. 1-31
    • (2012) Advances in Quantum Chemistry , vol.63 , pp. 1-31
    • Klaiman, S.1    Gilary, I.2
  • 22
    • 84875764958 scopus 로고    scopus 로고
    • It can be easily shown that in a CIS calculation the onset of the ionization continuum is exactly at Koopmans ionization energy (see, for example, Ref.). Likewise, in time-dependent density functional calculations (when using Tamm-Dancof approximation), the continuum states converge to the Kohn-Sham orbital energies (which may differ considerably from the ΔE values of ionization energies computed using the same functional). In EOM-CC calculations of excitation energies, the continuum begins at the respective EOM-IP-CC value (EOM-CC for ionization potentials). Thus, it is straightforward to determine whether an excited state is a resonance or not at a particular level of theory when employing these methods. No similar statement can be made for multi-reference methods
    • It can be easily shown that in a CIS calculation the onset of the ionization continuum is exactly at Koopmans ionization energy (see, for example, Ref.). Likewise, in time-dependent density functional calculations (when using Tamm-Dancof approximation), the continuum states converge to the Kohn-Sham orbital energies (which may differ considerably from the ΔE values of ionization energies computed using the same functional). In EOM-CC calculations of excitation energies, the continuum begins at the respective EOM-IP-CC value (EOM-CC for ionization potentials). Thus, it is straightforward to determine whether an excited state is a resonance or not at a particular level of theory when employing these methods. No similar statement can be made for multi-reference methods
  • 23
    • 0000610217 scopus 로고
    • 10.1063/1.461708
    • D. Neuhauser, J. Chem. Phys. 95, 4927 (1991). 10.1063/1.461708
    • (1991) J. Chem. Phys , vol.95 , pp. 4927
    • Neuhauser, D.1
  • 24
    • 33845557068 scopus 로고
    • 10.1021/ar00072a002
    • E. J. Heller, Acc. Chem. Res. 14, 368 (1981). 10.1021/ar00072a002
    • (1981) Acc. Chem. Res , vol.14 , pp. 368
    • Heller, E.J.1
  • 25
    • 0030588866 scopus 로고    scopus 로고
    • 10.1016/0009-2614(96)01110-4
    • F. Grossmann, Chem. Phys. Lett. 262, 470 (1996). 10.1016/0009-2614(96) 01110-4
    • (1996) Chem. Phys. Lett , vol.262 , pp. 470
    • Grossmann, F.1
  • 26
    • 0000603433 scopus 로고
    • 10.1103/PhysRevA.1.1109
    • A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109 (1970). 10.1103/PhysRevA.1.1109
    • (1970) Phys. Rev. A , vol.1 , pp. 1109
    • Hazi, A.U.1    Taylor, H.S.2
  • 29
    • 0002382944 scopus 로고
    • Stieltjes-Tchebycheff moment-theory approach to molecular photoionization studies
    • in, edited by V. McKoy, T. Rescigno, and B. Schneider (Plenum, New York)
    • P. W. Langhoff, Stieltjes-Tchebycheff moment-theory approach to molecular photoionization studies., in Electron Molecule and Photon Molecule Collisions, edited by, V. McKoy, T. Rescigno, and, B. Schneider, (Plenum, New York, 1979), pp. 183-224
    • (1979) Electron Molecule and Photon Molecule Collisions , pp. 183-224
    • Langhoff, P.W.1
  • 30
    • 84857165689 scopus 로고    scopus 로고
    • Quasi-bound states of electronic and positronic few-body systems: Analysis of multichannel scattering information
    • (Elsevier Inc.)
    • I. Shimamura, Quasi-bound states of electronic and positronic few-body systems: Analysis of multichannel scattering information., in Advances in Quantum Chemistry (Elsevier Inc., 2012), Vol. 63, pp. 165-245
    • (2012) Advances in Quantum Chemistry , vol.63 , pp. 165-245
    • Shimamura, I.1
  • 33
    • 0001773496 scopus 로고
    • 10.1007/BF01649654
    • B. Simon, Commun. Math. Phys. 27, 1 (1972). 10.1007/BF01649654
    • (1972) Commun. Math. Phys , vol.27 , pp. 1
    • Simon, B.1
  • 34
  • 35
    • 0027719622 scopus 로고
    • 10.1088/0953-4075/26/23/021
    • U. V. Riss and H.-D. Meyer, J. Phys. B 26, 4503 (1993). 10.1088/0953-4075/26/23/021
    • (1993) J. Phys. B , vol.26 , pp. 4503
    • Riss, U.V.1    Meyer, H.-D.2
  • 37
    • 4243194482 scopus 로고
    • 10.1016/0370-1573(91)90125-6
    • W. Domcke, Phys. Reports 208, 97 (1991). 10.1016/0370-1573(91)90125-6
    • (1991) Phys. Reports , vol.208 , pp. 97
    • Domcke, W.1
  • 38
    • 33747835834 scopus 로고
    • 10.1016/0003-4916(62)90221-X
    • H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962). 10.1016/0003-4916(62) 90221-X
    • (1962) Ann. Phys. (N.Y.) , vol.19 , pp. 287
    • Feshbach, H.1
  • 39
  • 40
    • 84868283066 scopus 로고
    • 10.1088/0953-4075/28/8/012
    • U. V. Riss and H.-D. Meyer, J. Phys. B 28, 1475 (1995). 10.1088/0953-4075/28/8/012
    • (1995) J. Phys. B , vol.28 , pp. 1475
    • Riss, U.V.1    Meyer, H.-D.2
  • 47
    • 84861841913 scopus 로고    scopus 로고
    • 10.1080/00268976.2012.659225
    • S. B. Zhang and D. L. Yeager, Mol. Phys. 110, 663 (2012). 10.1080/00268976.2012.659225
    • (2012) Mol. Phys , vol.110 , pp. 663
    • Zhang, S.B.1    Yeager, D.L.2
  • 49
    • 33749512164 scopus 로고    scopus 로고
    • 10.1016/j.chemphys.2006.07.002
    • S. Pal, Y. Sajeev, and N. Vaval, Chem. Phys. 329, 283 (2006). 10.1016/j.chemphys.2006.07.002
    • (2006) Chem. Phys , vol.329 , pp. 283
    • Pal, S.1    Sajeev, Y.2    Vaval, N.3
  • 52
    • 77956850831 scopus 로고
    • 10.1016/S0065-2199(08)60242-0
    • B. R. Junker, Adv. At. Mol. Phys 18, 207 (1982). 10.1016/S0065-2199(08) 60242-0
    • (1982) Adv. At. Mol. Phys , vol.18 , pp. 207
    • Junker, B.R.1
  • 53
    • 84875778519 scopus 로고    scopus 로고
    • Here, the non-complex-scaled HF reference is assumed. If the complex-scaled HF is employed molecular orbitals are no longer real. In this case an integral transformation routine has to be modified accounting for the transformation from integrals computed in the real AO basis to the basis of complex MO
    • Here, the non-complex-scaled HF reference is assumed. If the complex-scaled HF is employed molecular orbitals are no longer real. In this case an integral transformation routine has to be modified accounting for the transformation from integrals computed in the real AO basis to the basis of complex MO
  • 54
    • 84875791541 scopus 로고    scopus 로고
    • See supplementary material at E-JCPSA6-138-056312 for additional details
    • See supplementary material at http://dx.doi.org/10.1063/1.4795750 E-JCPSA6-138-056312 for additional details
  • 56
    • 37549014315 scopus 로고    scopus 로고
    • 10.1146/annurev.physchem.59.032607.093602
    • A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008). 10.1146/annurev. physchem.59.032607.093602
    • (2008) Annu. Rev. Phys. Chem , vol.59 , pp. 433
    • Krylov, A.I.1
  • 58
    • 0011510324 scopus 로고
    • (American Chemical Society)
    • C. W. McCurdy, ACS Symposium Series (American Chemical Society, 1984), Vol. 263, pp. 17-34
    • (1984) ACS Symposium Series , vol.263 , pp. 17-34
    • McCurdy, C.W.1
  • 67
  • 68
    • 5344230920 scopus 로고
    • 10.1016/0021-9991(75)90065-0
    • E. R. Davidson, J. Comput. Phys. 17, 87 (1975). 10.1016/0021-9991(75) 90065-0
    • (1975) J. Comput. Phys , vol.17 , pp. 87
    • Davidson, E.R.1
  • 69
    • 0002669014 scopus 로고
    • 10.1016/0021-9991(82)90104-8
    • S. Rettrup, J. Comput. Phys. 45, 100 (1982). 10.1016/0021-9991(82)90104-8
    • (1982) J. Comput. Phys , vol.45 , pp. 100
    • Rettrup, S.1
  • 70
    • 0000894889 scopus 로고
    • 10.1016/0021-9991(82)90119-X
    • K. Hirao and H. Nakatsuji, J. Comput. Phys. 45, 246 (1982). 10.1016/0021-9991(82)90119-X
    • (1982) J. Comput. Phys , vol.45 , pp. 246
    • Hirao, K.1    Nakatsuji, H.2
  • 72
    • 84875760987 scopus 로고    scopus 로고
    • New implementation of high-level correlated methods using a general block-tensor library for high-performance electronic structure calculations
    • E. Epifanovsky, M. Wormit, T. Kuś, A. Landau, D. Zuev, K. Khistyaev, I. Kaliman, P. Manohar, A. Dreuw, and A. I. Krylov, New implementation of high-level correlated methods using a general block-tensor library for high-performance electronic structure calculations, http://iopenshell.usc.edu/downloads/tensor/, 2011
    • (2011)
    • Epifanovsky, E.1    Wormit, M.2    Kuś, T.3    Landau, A.4    Zuev, D.5    Khistyaev, K.6    Kaliman, I.7    Manohar, P.8    Dreuw, A.9    Krylov, A.I.10
  • 74
    • 4243447072 scopus 로고
    • 10.1103/PhysRevA.23.2137
    • Y. K. Ho, Phys. Rev. A 23, 2137 (1981). 10.1103/PhysRevA.23.2137
    • (1981) Phys. Rev. A , vol.23 , pp. 2137
    • Ho, Y.K.1
  • 78
    • 84875786129 scopus 로고    scopus 로고
    • The discussion of the physical interpretation of the complex electronic density for resonances can be found in Refs.. Barkay and Moiseyev showed that the phase of the complex density probability is related to the resonant tunneling probability
    • The discussion of the physical interpretation of the complex electronic density for resonances can be found in Refs.. Barkay and Moiseyev showed that the phase of the complex density probability is related to the resonant tunneling probability
  • 79
    • 84875800363 scopus 로고    scopus 로고
    • When electrons cannot avoid each other angularly, they try to do it radially which results in a more diffuse wave function
    • When electrons cannot avoid each other angularly, they try to do it radially which results in a more diffuse wave function
  • 81
    • 0035471915 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.64.044702
    • H. Barkay and N. Moiseyev, Phys. Rev. A 64, 044702 (2001). 10.1103/PhysRevA.64.044702
    • (2001) Phys. Rev. A , vol.64 , pp. 044702
    • Barkay, H.1    Moiseyev, N.2
  • 84
    • 4243125151 scopus 로고
    • 10.1088/0022-3700/5/9/002
    • J. N. Bardsley and B. R. Junker, J. Phys. B 5, L178 (1972). 10.1088/0022-3700/5/9/002
    • (1972) J. Phys. B , vol.5 , pp. 178
    • Bardsley, J.N.1    Junker, B.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.